
BAT: An open-source, web-based

audio events annotation tool

Blai Meléndez-Catalán

Music Technology Group,

Universitat Pompeu Fabra

Roc Boronat 138, 08018

Barcelona, Spain

bmelendez@bmat.com

Emilio Molina

Barcelona Music and Audio

Techonologies

Bruniquer 49, 08024

Barcelona, Spain

emolina@bmat.com

Emilia Gómez

Music Technology Group,

Universitat Pompeu Fabra

Roc Boronat 138, 08018

Barcelona, Spain

emilia.gomez@upf.edu

ABSTRACT
In this paper we present BAT (BMAT Annotation Tool), an
open-source, web-based tool for the manual annotation of
events in audio recordings developed at BMAT (Barcelona
Music and Audio Technologies1). The main feature of the
tool is that it provides an easy way to annotate the salience
of simultaneous sound sources. Additionally, it allows to
define multiple ontologies to adapt to multiple tasks and of-
fers the possibility to cross-annotate audio data. Moreover,
it is easy to install and deploy on servers. We carry out
an evaluation where 3 annotators use BAT to annotate a
small dataset composed of broadcast media recordings. The
results of the experiments show that BAT o↵ers fast an-
notation mechanisms and a method to assign salience that
produces high agreement among annotators.

CCS Concepts
•Information systems ! Open source software; Web
applications; Information extraction;

Keywords
Annotation tool, audio events, web-based, open-source,
salience annotation

1. INTRODUCTION
In most tasks related to Music Information Retrieval

(MIR) and Speech Recognition, systems are trained and
evaluated on audio material that has been previously anno-
tated by humans. The annotation process is usually tedious
and time consuming; therefore, many annotation tools have
been developed to facilitate this process. Some of these tools
cover a large variety of tasks [2, 3] while others focus on a
small set of them [6]. In this sense, BAT is exclusively de-
signed for the annotation of audio events. However, an event
can be a chord, a bird’s chirp, words, the parts of a song or
the notes of the instruments that play it; thus, BAT is able

1www.bmat.com

Licensed under a Creative Commons Attribution 4.0 International License (CC BY

4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2017, August 21–23, 2017, London, UK.

c� 2017 Copyright held by the owner/author(s).

to generate annotations for many di↵erent tasks, allowing
the definition of an appropriate ontology for each of them.
Additionally, it includes the possibility for several annota-
tors to cross-annotate the audio to capture the ambiguity
that its content might produce in relation to the defined
ontology.

The main motivation behind the development of the
present tool is to advance the research on the task of music
detection in broadcast recordings, i.e., detecting which parts
of a recording contain music even though it is mixed with
other type of sounds. Specifically, we are interested in the
investigation of the benefits of using information about the
salience of music with respect to other possible simultane-
ous sound sources. For this reason, BAT is designed to o↵er
an easy way to annotate the salience of sound events that
coincide in time. This research is aligned with the inter-
ests of BMAT, a company based in Barcelona that monitors
music across televisions, radios, clubs and digital services of
all over the world, and reports it to more than 100 clients,
processing tens of thousands of hours of audio a day.

This paper includes 6 sections: in Section 2, we summarize
the requirements behind this development; then, in Section
3, we review the most relevant audio annotation tools. Sec-
tion 4 is devoted to a thorough description of our tool and,
in Section 5, we detail its evaluation process and discuss
the obtained results. Finally, in Section 6, we expose our
conclusions.

2. REQUIREMENTS
We state three requirements regarding BAT features: (1)

to allow for an easy annotation of the salience of simulta-
neous sound sources; (2) to permit the creation of fitting
ontologies for the multiple tasks it can be applied to; and
(3) to enable the cross-annotation of audio data by several
annotators.

In another sense, our tool also needs to be convenient to
the potential users, in terms of annotation time and e�-
ciency, while providing a simple, clear and agile annotation
environment and also helpful functionalities to ease the an-
notation process. Finally, we want to facilitate the manipu-
lation of the data stored in the tool’s database and the access
to detailed information about the annotation process.

3. RELATED WORK
To date, a variety of tools have been created for the an-



notation of audio events. A recent one is CrowdCurio2,
which is a JavaScript web interface for the annotation of
audio events that uses and extends the Regions plugin of
wavesurfer.js3. BAT employs this extended plug-in as it in-
cludes useful features such as labeled regions or the possibil-
ity to switch the sound visualization between its waveform
and its spectrogram (see Section 4.2). Another web-based
tool is I-SED[4], which includes machine learning techniques
to reduce the annotation time by automatically annotating
some of the audio content and presenting it to the annotator
for revision. SoundScape[5] also uses machine learning, and
it allows the annotation of specific time-frequency regions of
the spectrogram.

WaveSurfer[7]4 is a tool initially designed for speech an-
notation but deliberately made flexible and extensible to
di↵erent tasks. Other tools that were originally meant for
speech are Praat[1]5 and HAT6; however, Praat has been
also used for music annotation. WaveSurfer was used to
create MUCOSA[3], an environment for the annotation and
generation of music metadata at di↵erent abstraction lev-
els that incorporated a collaborative annotation subsystem.
Sonic Visualizer[2] is another example of related tool, better
known for its analysis and feature extraction applications,
which are added to the tool using vamp plug-ins. However,
it can also be used as an event annotation tool and can in-
corporate salience information using textual labels. Finally,
ELAN[8] is a full-featured and complex tool that allows the
annotation of both audio and video.

4. DESIGN
BAT is an open-source, web-based tool programmed in

Django and JavaScript and dockerized for an easy deploy-
ment on servers. For the front-end part, we have integrated
the extended version of wavesurfer used in the CrowdCurio
project. Regarding the back-end part, we o↵er the possibil-
ity to interact with the content of the database externally,
using Ipython and Jupyter. It currently accepts only audio
in WAV format and works, at least, with Mozilla Firefox,
Google Chrome and Opera. BAT can be found at its github
repository7 with a GNU AGPL v3.0 license. The repository
contains the source code, documentation about the installa-
tion and the annotation process, and the necessary docker
files.

4.1 Annotation process
The first step to start annotating audio with BAT is to cre-

ate a project. Projects represent a particular task we want to
annotate and should be named after it, for instance, we could
name our project ’MusicSpeech’. Each of these projects can
be assigned an unlimited number of classes, which ensures
ontological flexibility. Additionally, when creating a project,
it is possible to decide whether it allows its classes to overlap
in time (for audio event detection tasks such as instrument
recognition, music/non-music detection, etc.) or not (for au-
dio segmentation tasks such as chord recognition, structural
segmentation, etc.).

2https://github.com/CrowdCurio/audio-annotator
3https://wavesurfer-js.org/plugins/regions.html
4http://www.speech.kth.se/wavesurfer/
5http://www.fon.hum.uva.nl/praat/
6http://www.speech.kth.se/hat/
7https://github.com/BlaiMelendezCatalan/BAT

Once the project and its classes are ready we need to
upload the data we want to annotate. The uploaded au-
dio files are linked to the selected project and automatically
split to generate segments. These segments are the pieces
that the annotators will annotate independently and con-
secutively. Their length must be specified before uploading
the audio file. We have decided to work with fixed length
segments instead of the full audio files because it allows for
an annotation with constant time precision, while avoiding
actions such as zooming and scrolling, which introduce a
cost in time and increase the complexity of the annotation
process. Additionally, this setup favors the usage of crowd-
sourcing strategies by allowing the distribution of the work-
load among several annotators. Nevertheless, it is also pos-
sible to generate only one segment per audio file for tasks
such as global key estimation, genre recognition, etc.

We define two di↵erent types of users based on the tasks
they perform throughout the annotation process: the ad-
ministrator and the annotator. The administrator is the
user that creates projects, defines ontologies, uploads the
audio data and chooses the segments’ length. To this kind
of user, the tool provides an environment to search and filter
the content of all projects, which includes its classes, audio
files and segments. It also allows the visualization of all an-
notations, but not its modification or generation. The other
type of user, the annotator, has access only to its own anno-
tations, but can modify them or generate new ones as long
as there are still unannotated segments.

Annotating the content for some tasks may be an ambigu-
ous exercise and the annotator might have to incorporate a
certain amount of subjectivity. In these cases, the tool is pre-
pared to manage the annotations of more than one user, i.e,
to allow for cross-annotation. Having multiple annotations
is a way to express this ambiguity and to detect which are
the parts that produce more disagreement between annota-
tors. Notice that all the actions taken during the annotation
process are saved as logs, which store the action taken, the
time when it was taken and other optional values permitting
a detailed analysis.

When an annotator loads a segment, an annotation is im-
mediately created linked to that segment and that anno-
tator. We only allow a single annotation per segment and
annotator. BAT divides the annotation process into two
sequential phases: the event identification phase and the
salience assigning phase. In the first one, the annotator
must draw regions over the waveform containing events that
are relevant to the current task, be it a person speaking,
the time interval during which a certain chord sounds in a
song or a note of a soloing saxophone. Then, it must assign
a class from the available ontology to each of these regions
and optionally add a tag to them. There is no restriction in
the tags that the annotator can use.

If the events drawn in the first phase overlap in time, it
is mandatory to go through the salience assigning phase.
In this phase, new regions are automatically created that
divide the segments into the largest possible time intervals
with a homogeneous number and type of classes according
to the events drawn in the previous phase. A salience value
indicating loudness needs to be assigned to every class for
those regions that cover a time interval with more than one
class. This value has 5 possible levels represented by the
integers in the range from 1 to 5. The annotation is rela-
tive to the class or classes with the highest loudness, which



Figure 1: Layout of the annotation tool.

must always receive a salience value of 5. A relative sys-
tem prevents inconsistencies due to the volume at which the
annotator listens to the audio and can be approximated to
an absolute annotation using the energy of the audio signal.
After having assigned these salience values, the annotation
of the current segment is finished and the next one can be
loaded. The tool o↵ers the possibility to go back and forth
from one phase to the other; however, all salience informa-
tion is lost when going back to the event identification phase,
as events might be modified, and thus, produce di↵erent re-
gions in the salience assigning phase.

The annotator is only forced to follow two rules during the
annotation process: first, while in the event identification
phase, it is not possible to finish the annotation or access the
salience assigning phase if there are regions with no assigned
class; and second, while in the salience assigning phase, it is
not possible to finish the annotation if there are unassigned
salience values. The tool will display a warning with the
corresponding explanation every time the annotator incurs
in one of these violations.

4.2 Annotation interface
We have designed the tool’s graphical user interface with

three concepts in mind: simplicity, clarity and helpfulness.
Regarding simplicity, we want to highlight that, to start an-
notating, the annotator needs only to select a project and
the tool will automatically deliver segment after segment un-
til the annotator decides to stop or it has produced an an-
notation for every segment of the selected project. Also, the
annotation process consists only of two well-defined steps,
from and to which the annotator can easily transition. More-
over, the tool includes a set of notifications that warn and
guide the user when it accidentally takes actions that would
break one of the rules specified in Subsection 4.1.

Unlike other tools such as Sonic Visualizer, BAT has a spe-
cific purpose, which allows to promote clarity by displaying
only the most essential elements in a balanced and colorful
way. As you can see in Figure 1, the interface is organized
in rows of elements: the first one (1) contains two buttons
that expand a text box with either annotation tips or the
list of controls. In the next row (2), at the left side we
find the button to switch the audio visualization from wave-
form to spectrogram and vice versa (green), and at the right
side, the button to transition between the two phases of the
annotation process (orange) and the buttons to finish the
annotation (blue). After that, (3) we have the audio visual-

ization with a button to play and pause its playback. The
figure shows one music region that overlaps with 4 speech
regions. The speech region with the yellow label is currently
the selected one. (4) The last row shows the classes and
tags assigned to the selected region, which can be modified
during the event identification phase.

Concerning helpfulness, the tool integrates a few function-
alities in the form of keyboard shortcuts and automatic cor-
rections that make the annotation process faster and more
comfortable. Regarding keyboard shortcuts, BAT o↵ers the
possibility to set the class of the regions, to navigate through
and play the audio and to expand the limits of a region to
the boundaries of either another region or the entire seg-
ment. The helpful functionalities include: first, the preven-
tion of overlaps if the project does not allow them; second,
the unification of close region limits to avoid the creation
of small overlaps, which are ine�cient to solve; third, the
inclusion, at each side of the waveform, of a padded zone
that cannot be annotated in order to provide more informa-
tion about the sounds at the beginning and at the end of
the segment; and finally, the deletion of small regions when
created accidentally by dragging the mouse after a click.

5. EVALUATION
As mentioned in Subsection 4.1, the annotation process

has two phases. In each of these phases, the annotator can
be either listening to the audio or taking annotation actions
such as drawing or deleting events, assigning a class to them
or setting the salience value of a region. On one hand, the
evaluation is meant to assess the distribution of the total
cost in time between the event identification and salience
assigning phases, and between playback and annotation ac-
tions. On the other hand, we are interested in evaluating the
agreement among the di↵erent annotators on the assigning
of salience values.

We have not measured the total annotation time as it is
dependent on the ontology used and the complexity of the
selected audio. We could have compared BAT with other
existing tools based on this measurement, but we have not
done so for the following reason: this kind of evaluation
would not be fair if not accompanied by an assessment of
the performance of an algorithm trained with the annota-
tions produced by each tool. In other words, what is really
important is the trade-o↵ between the annotation time and
the algorithm’s performance. This assessment is unfeasible



Figure 2: (top) Real times spent in (a) the event
identification phase, (b) the salience assigning phase, (c)
playback actions and (d) annotation actions. (bottom)

Agreement in the assigned salience values.

as it requires the annotation of a training dataset with each
tool.

5.1 Evaluation methodology
The dataset used for the evaluation contains 8 recordings

with a duration of 1 minute. Each of these recordings belong
to one of the following 8 types of broadcast media programs:
news, documentary, music, children, series and films, sports,
entertainment and debate. We load them to the database
with a segment length of 30 seconds, thus producing a total
of 16 segments.

For the first part of the evaluation, we had 4 annota-
tors annotate the dataset. The task that they had to carry
out was to annotate audio events and their salience using a
simple and well-defined ontology containing the music and
speech classes. Before the annotators could start annotat-
ing, we described the annotation process as well as the avail-
able controls, and let them annotate a few examples until
they felt confident using the tool. To evaluate the anno-
tators agreement on the salience values, we annotated the
dataset in advance without introducing salience information
and then had the same 4 annotators input it. The segments
were delivered to the annotators already in the salience as-
signing phase.

5.2 Evaluation results
The top plot of Figure 2 presents the time distribution

between annotation phases and between playback and an-
notation actions. The vertical axis represents time and it
is expressed as number of real times, i.e., the ratio between
the time spent annotating a segment and the segments’ du-
ration. The time spent in each phase or type of action is
not that informative as it depends on the complexity of the
ontology and the number of events contained in the seg-
ments that are relevant to this ontology. What we want
to highlight is the relationship between these times: we ob-
serve that, on average, the annotation of the salience of the
events takes less than 50% of the time that is devoted to the
identification of these events. We also find approximately
the same proportion between the time spent listening to the
audio and its annotation.

Regarding the agreement on the salience annotation, the
bottom plot of Figure 2 shows that for almost 50% of the
regions the values assigned by all the annotators are identi-

cal. This percentage raises to 84% if we consider the regions
where 3 of the annotators coincide and to 100% for the case
of 2 annotators. There is no region that has been annotated
di↵erently by all annotators. We reach a total agreement of
83% if we average the highest percentage of identical anno-
tations over all the annotations for each region.

6. CONCLUSIONS
In this paper we have presented BAT, an open-source,

web-based tool for the annotation of audio events that has
as its main feature the easy annotation of the salience of
these events and also includes the possibility to generate
ontologies and to cross-annotate data. We have focused its
evaluation, first, in the distribution of the time cost between
annotation phases and between action types; and second, in
the agreement of the salience annotations produce by the
annotators. The results show that BAT o↵ers fast annota-
tion mechanisms, as the majority of the annotation time is
spent listening to the audio, and that its salience annotation
system provides the requested information in an e�cient and
robust manner. In the future, we consider the incorporation
of active learning methods to e�ciently train algorithms, as
well as automatic annotation formulas to reduce the cost of
the annotation process.

7. REFERENCES
[1] P. Boersma. PRAAT, a system for doing phonetics by

computer. Glot International, 5(9/10):341–345, 2001.
[2] C. Cannam, C. Landone, M. Sandler, and J. P. Bello.

The Sonic Visualizer: A Visualization Platform for
Semantic Descriptors from. In Proceedings of the 7th
International Conference on Music Information
Retrieval (ISMIR-06), pages 324–327, 2006.

[3] P. Herrera, J. Massaguer, P. Cano, F. Gouyon,
M. Koppenberger, N. Wack, and U. P. Fabra. Mucosa:
a music content semantic annotator. In Proceedings of
the 6th International Conference on Music Information
Retrieval (ISMIR-05), 2005.

[4] B. Kim and B. Pardo. I-SED : an Interactive Sound
Event Detector. In Proceedings of the 22nd
International Conference on Intelligent User Interfaces,
pages Pages 553–557, 2017.

[5] D. Krijnders and T. Andringa. Soundscape annotation
and environmental source recognition experiments in
Assen (NL). Inter Noise, 2009.

[6] M. Mauch, C. Cannam, R. Bittner, G. Fazekas,
J. Salamon, J. Dai, J. P. Bello, and S. Dixon.
Computer-aided melody note transcription using the
Tony software: accuracy and e�ciency. In Proceedings
of the First International Conference on Technologies
for Music Notation and Representation (TENOR),
2015.

[7] K. Sjölander and J. Beskow. Wavesurfer - an open
source speech tool. In INTERSPEECH, volume 4,
pages 464–467, 2000.

[8] P. Wittenburg, H. Brugman, A. Russel, A. Klassmann,
and H. Sloetjes. ELAN: A professional framework for
multimodality research. In Proceedings of the Fifth
International Conference on Language Resources and
Evaluation (LREC), pages 1556–1559, 2006.


