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José L. Santacruz1 ·Lorenzo J. Tardón1 ·
Isabel Barbancho1 ·Ana M. Barbancho1 ·
Emilio Molina1

Received: 30 July 2015 / Revised: 12 April 2016 / Accepted: 3 May 2016
© Springer Science+Business Media New York 2016

Abstract In this paper, a scheme to synthesize and convert singing voice into tuba sound is
presented. First, our method estimates the fundamental frequency (F0) and the aperiodicity
of a monophonic audio signal, in order to obtain the pitch and volume variations of human
voice. Then, the parameters extracted are used to generate a musical excerpt emulating a
certain musical instrument (tuba) in such a way that the melody resembles the original sung
song. To this end, two different generation approaches are devised. One of them is based on
additive signal synthesis from harmonic amplitudes. The other one converts the F0 curve
into a MIDI stream, in order to allow the play back with a virtual tuba.

Keywords Voice transformation · Sound synthesis · Music application

1 Introduction

Nowadays, interactive voice applications have become an interesting field for development
and study. Automatic transcription of sung melodies has very different applications in seri-
ous games, museums, education and many creative purposes [3, 8, 14]. There is a lot of
literature on melody transcription [15, 19] and voice transformation methods [11, 12, 24].
These two concepts can be considered jointly to allow the implementation of a low level
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voice-to-tuba transformation method, such that a vocal melody will be turned into a tuba
melody conserving some voice features.

Thus, in this paper, we propose an interactive method for pitch-based voice-to-tuba trans-
formation that can be used for entertainment and music learning applications (ie. to learn
the timbre of a certain instrument with the student’s own melodies). The system obtains
the fundamental frequency and other specific parameters of an input audio signal using the
Yin algorithm [2], then, after some ad-hoc post-processing stages the voice-to-instrument
transformation is performed.

This process, voice-to-instrument conversion, is performed by following two different
approaches. On the one hand, a new signal is synthesized from the F0 curve by making use
of an instrument harmonic amplitude database. The harmonic relative amplitudes of musical
instrument depend on the signal pitch, since different ranges of F0 mean different spectral
harmonic distributions for a certain instrument. Wind instruments, like a tuba or a bassoon,
have been considered because of their resemblance with human voice. Specifically, we will
focus on tuba.

On the other hand, in the second conversion approach devised, the pitch information
obtained is processed by a note segmentation and transcription scheme, followed by a tran-
sition correction block. This latter stage is aimed at eliminating undesired pitch transitions
to obtain a better musical result.

In order to compare the quality of both methods against a different approach based
on a state-of-the-art technique, a third transformation scheme has been implemented. This
method is a timbre morphing technique [1] based on mixing properties of two sounds, which
in this case, are a singing voice and a tuba note.

The paper is organized according to the diagram shown in Fig. 1. In Section 2, the
methodology used in this project is explained. Section 2.1 presents the feature extraction
stage. This step is based on pitch detection by making use of the Yin algorithm [2] and
the later filtering of both the F0 curve and the aperiodicity. In Section 2.2, the transfor-
mation of the signal by means of the methods presented above is described. Section 2.2.1
describes the conversion method based on the harmonic amplitudes, in Section 2.2.2 the
MIDI transcription process is detailed. The results, the evaluation methodology and a com-
parison between both methods and the technique based on timbre morphing are described
in Section 3. Finally, some conclusions are drawn in Section 4.

2 Methodology

In this section, we expose the methodology used for the entire conversion schemes which
is accomplished by different steps depending on the transformation method. Some steps are
common to both methods, and others are specific to one of them.

Roughly, the procedure to convert singing voices into a musical sample can be divided
into two steps: (1) feature extraction and (2) voice to instrument transformation. These steps
are illustrated in Fig. 2.

2.1 Feature extraction

In order to perform the desired transformation some parameters must be extracted from the
singing voice. These parameters and the procedures used to perform the adaptation of the
parameters obtained by the Yin algorithm to our specific task are described in the next two
sections.
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Fig. 1 Scheme of the proposed conversion methods

2.1.1 Parameter extraction: YIN algorithm

To create a musical excerpt that sounds similarly to the sung song, some information of the
pitch and the rhythm of the later are required. In this sense, it has to be observed that the F0
curve actually contains most of the information needed.

So, the first step is the estimation of the F0 curve. This step is accomplished by using
the YIN algorithm [2] which has shown good performance in this task in many music tran-
scription system [17, 26]. This algorithm works on the idea of the autocorrelation method
and defines a number of steps for improved performance. Specifically, the authors define
the cumulative mean normalized difference function d ′

t [τ ], which is given by:

d ′
t [τ ] =

{
1 τ = 0

dt [τ ]
1
τ

∑τ
j=1dt [j ] otherwise (1)

where τ is an integer lag expressed in samples: τ ∈ [0,W), with W the window size in
samples and dt [τ ] the squared difference function:

dt [τ ] =
n+W∑
j=n

(x[j ] − x[j + τ ])2 (2)

where x[τ ] is the amplitude of the input signal x at τ .
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Fig. 2 Detailed scheme of the proposed conversion methods

The Yin algorithm finds the local minimum in d ′
t [τ ] with the smallest lag (τ ′) and

then performs a parabolic interpolation in order to find more accurately the location (τp)

of that minimum that leads to the fundamental frequency using: f0 = fs/τp , where
fs is the sampling frequency. The minimum d ′

t [τ ′] must be under a predefined thresh-
old which, as the authors of the algorithm recommend, we set to 0.1. The threshold
can be interpreted as the maximum proportion of aperiodic power in a periodic sig-
nal tolerated. In order to understand this idea, consider the following identity (see [2]
for details):

2(x2[n] + x2[n + T ]) = (x[n] + x[n + T ])2 + (x[n] − x[n + T ])2 (3)
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Taking the average over a window W and dividing by 4, the following expression
appears:

1

2W

n+W∑
j=n+1

(x2[j ] + x2[j + T ])

= 1

4W

n+W∑
j=n+1

(x[j ] + x[j + T ])2 + 1

4W

n+W∑
j=n+1

(x[j ] − x[j + T ])2 (4)

The left-hand side of (4) approximates the power of the signal, and the two right-hand
side terms are a partition of this power. Observe that the second one is zero if the signal is
periodic with period T, which suggests it interpretation as the “aperiodic power” component
of the signal. Now, note that it τ = T , the numerator of (1) (dt [τ ]) is proportional to the
aperiodic power, and its denominator (average of d[τ ]) is approximately twice the signal
power [2]. Thus, the aperiodicity measure ap = d ′

t [τp], is approximately proportional to
the aperiodic/total power ratio.

Regions with harmonic structure show low aperiodicity (see [2]). Conversely, unvoiced
frames usually present high aperiodicity. This fact is illustrated in Fig. 3, which shows the
curves obtained from the waveform of a woman singing the Happy Birthday song.

Figure 3 shows the audio waveform (a) of the four phrases in the song and the aperiodic-
ity (b). Voiced frames usually present low aperiodicity and stable F0. As it can be observed,
aperiodicity has a significant value at frames between the phrases of the song, when the
singer is silent or is just breathing.

Fig. 3 Signal amplitude and aperiodicity curve in the Happy Birthday song a Amplitude of the original
signal x. b Aperiodicity of the same signal, which shows significant values at frames between the phrases of
the song, when the voice is hardly audible
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Table 1 Yin algorithm
parameters and values employed Parameter Value

Frame length 1470 samples

Hop size 735 samples

Integration window length 1470 samples

F0 min 80 Hz

F0 max 900 Hz

Resolution 16 bits

Sampling rate 44100 Hz

Thus, this algorithm can be used for both extracting the F0 curve and identifying
voiced/unvoiced frames. Also, the aperiodicity parameter will be used later for shaping the
volume of the generated audio signal. For this same purpose, the energy parameter is cal-
culated at this step as well. In the case of the harmonic amplitude method, the aperiodicity
alone is not enough to achieve a natural release of singing phrases, so we also used the
instantaneous energy of the signal estimated by using a moving window to improve the
performance. In the window, the energy (E) is obtained as:

E =
N∑

n=0

|x[n]|2 (5)

with N = 1470 samples.
In order to avoid ambigüities in later descriptions the parameters of the Yin algorithm as

used in this work are shown in Table 1. For human voice, it is reasonable to set the upper and
lower limits for the pitch (F0) to 900 Hz and 80 Hz, respectively. In the frames in which the
aperiodicity is over the threshold or the detected pitch is out of the bounds, the F0 assigned
is 0 Hz.

After the parameters are obtained, the data curves have to be adapted to be usable in
our task. Specifically, F0 and aperiodicity should present good stability to avoid undesired
unnatural tuba pitch changes and interruptions of the sound after the music transformation
or generation is performed. To this end, a median filter that will be described in the next
section will be used to smooth the F0 curve to avoid undesired pitch changes. This step is
specially important in the case of the posterior utilization of the MIDI transcription method.
Regarding the aperiodicity, a low-pass filter will be used to achieve the desired volume
control goal; the energy will be filtered likewise.

2.1.2 Adaptation of extracted parameters

The F0 curve of a human voice has unavoidable fluctuations due to micro-tonal pitch
changes. In order to minimize the effect of this natural phenomenon in the musical excerpt
generated, regardless the transformation method, the system devised applies a median filter
to this curve. Median filtering has been successfully used previously for singing transcrip-
tion [5, 9] and speech processing schemes [21]. Since a typical F0 curve presents noticeable
discontinuities a linear approach, such as low-pass filtering, does not work properly for our
purpose.

Figure 4 shows an example of the application of median filtering to a pitch curve obtained
by the Yin algorithm with the parameters indicated in Section 2.1.1. The F0 curve obtained
directly from the utilization of the Yin algorithm (grey) shows clear oscillations due to a
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Fig. 4 Example of the application of median filtering to a pitch curve obtained by the Yin algorithm. The
filtering process smooths oscillations and removes spurious gaps

natural vibrato of the voice. Some frames of the last phrase sung (between 11.4 and 15.8
sec.) present several spurious values because of errors of the detection of the Yin algorithm.
In the filtered F0 curve (black), the gaps have been removed completely and, additionally,
the oscillations have been smoothed. After some tests, we decided to apply a 300-point
median filter to get the best subjective results.

The usage of aperiodicity is aimed at helping to modulate the volume of the output signal.
So, we define a volume parameter as a normalized function of the aperiodicity:

volume(t) =
{

0 ap(t) > 0.1
1 − 10 · ap(t) otherwise

(6)

where ap(t) is the instantaneous aperiodicity of the signal calculated in a frame-by-frame
basis, with ap(t) between 0 and 0.1. Recall that ap(t) > 0.1 means that the aperiodicity
in that frame is too large, so its F0 detected is set to zero and consequently no transformed
signal will be produced for that frame.

Note that due to the intended usage of volume(t), it is not considered necessary to apply
a high order filter control its variations of the volume. Small variations of the volume will
give naturalness to the output sound. Thus, in order to filter out some undesired noise in the
estimated aperiodicity curve (shown in Fig. 3) we apply a linear smoother implemented as
a low-pass filter. In this case, a 4-order Butterworth filter attains good performance.

In Fig. 5, we show the F0 and aperiodicity curves after filtering. These data, as shown in
this figure, will be used in next blocks.

As previously indicated, the volume alone is not enough to provide with a good modu-
lation of the signal if the harmonic amplitude transformation method is used. The energy

parameter is employed to overcome this issue, which is also filtered by a 4th order
Butterworth low-pass filter.

Figure 6 shows the relationship between the energy and the volume parameter of a sig-
nal, which are very different from each other. The main reason for using the energy curve
is to achieve the natural release of singing phrases, thank to its smoothness at the end and
at the beginning of the phrases. The volume curve modulates the intensity of the notes. The
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Fig. 5 a Aperiodicity ap = d ′
t [τp] and b filtered F0 curve of Happy Birthday song performed by a female

singer. Observe that in the filtered F0 curve, gap have been removed and oscillations have been greatly
smoothed

simultaneous usage of both volume and energy parameters allows to achieve natural vari-
ations of the intensity and to remove abrupt sound ending in the harmonic amplitude
method.

Fig. 6 Energy and volume curves in the Happy Birthday song performed by a female singer. a Energy curve
smooths the beginning and the end of the phrases. b Volume curve modulates the intensity of the notes
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2.2 Transformation methods

The goal of this step is to generate a new signal that resembles the original sung melody
as closely as possible but sounds as played by a certain instrument by making use of the
parameters described in the previous section.

As shown in Fig. 1, we have considered two different approaches to perform this trans-
formation: the harmonic amplitude method and the MIDI transcription scheme (see also
Fig. 2).

2.2.1 Harmonic amplitude method

The additive synthesis is a well known sound synthesis technique [16], that consists on
the superposition of sinusoidal components whose frequency and amplitude varying with
time producing a dynamic spectrum. Specifically, the synthesis of a given musical instru-
ment sound is performed by using a set of sound oscillators with amplitude and frequency
controlled by the information obtained by a previous analysis of a real instrument sound.

This approach constitutes a simple additive synthesis model based on [7] for generating a
dynamic spectrum. This synthesis model is not suitable to reproduce many special features
of wind instruments, but it does generate a wide range of timbres and allows tracking the
temporal evolution of the amplitude and frequency of harmonics.

It must be observed that the spectrum of a sound changes noticeably with the funda-
mental frequency [18]. The amplitude and frequency of each harmonic play an essential
role in timbre perception, and therefore they must be properly considered in order to get a
synthesized signal as realistic as possible.

The synthesis model selected is publicly available as a toolbox library in Matlab/GNU
based on Csound code in [6]. The toolbox contains a very complete implementation, but
we only make use of the database containing information of the relative amplitudes of the
harmonics of the selected wind instruments. Note that this spectral harmonic distribution
depends on both the specific instrument and the pitch.

The concrete distribution and ranges of F0 depend on the instrument. There are ten wind
instruments available: horn, clarinet, oboe, bassoon, flute, piccolo, sax, trumpet, tuba and
trombone. Synthesis is performed by using a deterministic model [23] based on additive
synthesis.

This model is ultimately defined by the following expression, where the output signal
y(t) is:

y(t) =
K∑

k=1

rk cos(2πkF0t + φk) (7)

where K is the number of harmonics, rk is the amplitude of harmonic k, F0 is the
fundamental frequency and φk is the phase offset of harmonic k.

2.2.2 MIDI transcription method

At the present stage, melody transcription is performed at low-level (extracting voice param-
eters directly) and higher structural levels [10] (related to note segmentation or rhythm and
harmony organization).

Thanks to the filtering stages performed earlier, the F0 curve presents high stability
within each note, which makes it appropriate to obtain its MIDI representation. However,
portamentos are still a problem for a good MIDI conversion. The process to overcome this
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Fig. 7 a The duration of the second note is under 130 ms. b After the transition correction process, the
duration of the note is added to the previous one

issue consists on the removal of the notes with duration under 130 ms, adding the duration
of these notes to the previous note. Thus, only long portamentos (>130 ms) will be inter-
preted as actual notes and the rhythmic structure obtained after the feature extraction stage
will be mostly maintained. This process is illustrated in Fig. 7, which shows a conventional
MIDI representation. Each bar is a note, with length and height representing the length and
the pitch of the note, respectively. The length of the second note of the first scheme (a) is
under 130 ms, thereby its duration is added to the previous note, giving the second scheme
(b).

Notes must properly defined to generate a correct MIDI stream. In our approach, each
note is assigned the values of pitch, onset/offset time and velocity.

Pitch assignment is done by simply rounding the filtered F0 curve to the closest MIDI
note, assuming A4 - 440 Hz standard tuning. Pitch transients and portamentos under 130 ms
are not considered actual notes as described before. Onset and offset times are placed
according to note changes and the detected voiced/unvoiced regions. The velocity of a note
represents its loudness in MIDI notation being a number between 0 and 127. In our case,
the previously estimated parameter volume (Section 2.1.1) is used to set the velocity. Since
our parameter volume(t) ranges between 0 and 1, the velocity, is defined as follows.

velocity(t) = �volume(t) · 127� (8)

where �� means round towards the nearest smaller integer.
Finally, MIDI transcription was performed with the MIDI tool kit for Matlab developed

by Ken Schutte [22]. This tool kit allows reading and writing MIDI files by using Matlab
matrices. In this tool, each note corresponding to a MIDI note message includes onset/offset
times, MIDI note number and velocity.

Finally, in order to play the MIDI melody with the tuba sound we used a free orchestral
sample library from Sonatina Symphonic Orchestra created by University of Iowa Musical
Instrument Samples (MIS) [25].

3 Results and evaluation

We performed the voice-to-tuba transformation process to 38 melodies available in our
dataset with the two methods described above. The system performance has been sub-
jectively evaluated by means of a survey open to volunteers in our website. Thus, the
participants in the survey are both trained and untrained musicians. We presented 5 out of the
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38 original melodies and their transformations to each participant in the survey (we selected
a small subset of samples in order to maintain the attention of the participants during the
evaluation) and we asked them about different subjective features such as similarity to the
real instruments and resemblance to the original melodies. Additionally, we performed and
objective evaluation of the transcription method used in our transformation schemes on the
database used in these experiments with the standard MIREX note-tracking measures [4].

Recall that our dataset contains 38 melodies sung by adult and child untrained singers,
these audio excerpts have been recorded with a sample rate of 44100 Hz and a resolution
of 16 bits [13]. The recordings are not clean and some background noise is present. The
duration of the excerpts ranges from 15 to 86 s summing a total duration of 1154 s. This
music collection can be broken down into three categories, according to the type of singer:

– Children (our own recordings): 14 melodies of traditional children songs (557 s) sung
by 8 different children (5–11 years old).

– Adult male: 13 pop melodies (315 s) sung by 8 different adult male untrained singers.
These recordings were randomly chosen from the public MTG-QBH dataset [20].

– Adult female: 11 pop melodies (281 s) sung by 5 different adult female untrained
singers.These recordings were also randomly chosen from the public MTG-QBH
dataset.

First, we will present the results of the objective evaluation of the performance of the F0
curve extracted and then, the results extracted from the subjective evaluation performed by
means of the open survey previously described.

3.1 Objective evaluation of the F0 curve used as input to the transformation
scheme

The evaluation of melody transcription systems commonly consists on the comparison
between the transcription and human annotations. In our case, we have used an evaluation
framework [13] specifically designed for this purpose, with evaluation measures based on
standard MIREX note-tracking measures [4], plus some extra information about the error
type.

In our evaluation framework, the definition of correctly transcribed notes is based on
the combination of a number of conditions: correct onset, correct offset and correct pitch.
Specifically, we have considered three different definitions of correct note as defined in
MIREX, which have been described extensively in [13].

– Correct onset, pitch and offset (COnPOff).
– Correct onset and pitch (COnP).
– Correct pitch (COP).

These three parameters are analyzed using three different measures: precision, recall and
F-measure [13].

We have included some evaluation measures to identify incorrect notes with one single
error. These are:

– Only-Bad-Onset (OBOn).
– Only-Bad-Pitch (OBP).
– Only-Bad-Offset (OBOff).

On the other hand, segmentation errors have been described by using two different
definitions:
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Fig. 8 Results of the evaluation of the measures computed for the system. Range is from 0 to 1. The
parameters have been analyzed using three different measures: precision, recall and F-measure [13]

– Split: a note that is incorrectly segmented into different notes.
– Merged: a set of consecutive notes are incorrectly considered to be merged into the

same note.

Finally, incorrect notes with voicing errors are described by two other definitions:

– Spurious: an unvoiced sound produced a false transcribed note.
– Non-detected: a sung note is not transcribed at all.

In Fig. 8, we show the results obtained for each evaluation measure computed for our
system, in a 0 to 1 range. We consider the pitch detection performance, represented by the
bars labeled COP pretty good, with a value close to 0.6. It is followed by the performance of
offset and onset times, labelled COn and COff, with values close to 0.5 in the case of correct
onset, and around 0.3 in the case of correct onset and offset. However, the merge error
(close to 0.4) is the main issue of the method, as often happens in other MIDI transcription
systems.

It is important to note that the final perceptual evaluation relies on the performance of the
F0 detection scheme and the two parameters subjectively scored depend on the quality of
the estimation of the pitch and rhythm of the sung melody and the filtering stages described
before.

3.2 Perceptual evaluation
In this section, the results of the subjective evaluation of the audio samples created by the
proposed schemes will be drawn. First, we present the particularities of this evaluation.
Then, Sections 3.2.1 and 3.2.2 detail the results obtained on harmonic amplitude method and
MIDI transcription method, respectively. Finally, in Section 3.2.3 the comparison between
both methods is exposed.

Among the ten available wind instruments in the musical instrument data set [6], we
chose the tuba at the sight of its observed sound quality. Figure 9 shows the comparison
between the harmonics of a real tuba and the synthesized tuba of our system, playing the
same note, a C#3. Since its frequency, 141 Hz, is between 121 and 161 Hz, the synthesized
tube is generated with 8 harmonics, according to the corresponding column of Table 2.

Table 2 shows the spectral harmonic distribution and the relative amplitudes for 6 differ-
ent pitch ranges for the tuba. The relation between the relative amplitudes remains constant
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Fig. 9 Real tuba (a) and synthesized tuba (b) harmonic spectra playing a C#3 note. The real instrument
produces a large number of harmonics. On the other hand, according to Table 2, and taking into account that
the frequency of the C#3 is between 121 and 161 Hz, the synthesized tuba sound is created with 8 harmonics
with their corresponding relative amplitudes

within a pitch range, but they are also modulated by the signal volume. The table reflects
the well known fact according to which lower notes are richer in harmonics, being this the
reason why the number of harmonics shown in the table decreases with the growing pitch.

A comparison between the harmonics of a real tuba and the MIDI tuba selected in our
system is qualitatively shown in Fig. 10. Since the sound of the MIDI instrument is extracted
from a sample library generated from many recordings of real instruments [25], the number
of harmonics is very similar to the real case. The difference between the relative harmonic
amplitudes may be due to the instruments manufacturing and the recording studio.

The data of the subjective evaluation are gathered by means of an open survey1 in which
each participant in the survey had to evaluate two different aspects of the results of the
transformation of 5 distinct sung melodies: the similarity of the sound with a real tuba and
their resemblance to the original melody.

A total of 21 persons participated in the survey, 19.05 % of them had no musical
background while 80.95 % had.

3.2.1 Synthesized tuba

Table 3 shows the results for the survey of the synthesized tuba. The selected melodies
were performed by 3 adult female, 1 adult male and a child singer. The participants were

1http://www.atic.uma.es/voice2tuba/Voice2Tuba survey2

http://www.atic.uma.es/voice2tuba/Voice2Tuba_{s}urvey2
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Table 2 Relative harmonic amplitudes for the synthesized tuba extracted from the Csound toolbox [6]

F0 range (Hz) 0 ∼ 68 68 ∼ 90 90 ∼ 121 121 ∼ 161 161 ∼ 216 >216

Relative harmonics 2.63 3.18 0.68 0.32 1.07 0.44

1.17 3.82 0.74 0.93 0.53 0.18

3.12 2.99 0.79 0.59 0.35 0.08

1.52 2.24 0.39 0.24 0.18 0.02

2.39 1.99 0.32 0.10 0.05

1.54 1.05 0.17 0.09 0.02

1.34 0.74 0.10 0.08

1.33 0.50 0.10 0.02

0.76 0.37 0.07

0.73 0.36 0.06

0.45 0.28 0.03

0.38 0.28

0.38 0.21

0.39 0.13

0.29 0.10

0.23 0.06

0.17 0.02

0.15

0.07

0.06

0.09

0.03

The number of harmonics and their relative amplitudes depend on the pitch

asked to score between 1 and 5 (where 1 means poor and 5 excellent) the quality of the
transformation and its resemblance with the original melody.

The majority of the evaluators considered that the resemblance to the original melody
was better than the sound quality. Note that the resemblance to the original melody, with this
sound generation method, heavily depends on the pitch, onset and offsets obtained after the
pitch extraction scheme and filtering stage. On the other hand, we think that the similarity to
a tuba sound strongly depends on the model selected for the additive synthesis of the sound.

The result regarding the resemblance to the original melody is very satisfactory, however
the result on the similarity to a real tuba melody attained a lower score.

3.2.2 MIDI tuba

In this section, the results found after the same survey described in the previous section
with the audio excerpts created using the MIDI tuba approach are shown. According to
Table 4, it is clear that the audio melody sounds like played by a real tuba, according to
the participants’ responses and also, the score about the resemblance the original melody is
noticeably good, although the mean is lower than with the previous approach.
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Fig. 10 Real tuba (a) and MIDI tuba (b) harmonic spectra playing a C#3 note. The real instrument produces
a large number of harmonics. Regarding the MIDI tuba, its sound is created from a real instrument of Sonatina
Symphonic Orchestra [25], showing a similarly large number of harmonics

3.2.3 Comparison between the transformation approaches

In this section, we perform a comparative analysis of the subjective results attained by the
transformation methods proposed.

But before that, we present an additional third transformation method which has been
considered and included in the survey in order to compare the quality of our approach with
a method derived from a different state-of-the-art scheme. This scheme is timbre morphing
technique based on the harmonic plus stochastic model [1], which have proved to attain
remarkable performance for voice synthesis. The timbre morphing is a transformation that
generates new audio excerpts with hybrid properties extracted from two others elements.
The technique relies on the interpolation of the harmonic and the residual components [23]
of two sounds, in our particular case, a singing voice and a tuba note.

Table 3 Results of synthesized
tuba survey (mean values) It sounds like It resembles

a real tuba the original melody

Melody 1 2.52 4.28

Melody 2 2.28 3.57

Melody 3 2.33 3.52

Melody 4 2.47 4.19

Melody 5 2.52 3.9

Mean 2.42 3.89
The mean value of the
resemblance is significant higher
than the mean sound quality
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Table 4 Results of the MIDI
tuba survey (mean values) It sounds like It resembles

a real tuba the original melody

Melody 1 4.38 4.28

Melody 2 3.85 3

Melody 3 4.23 2.76

Melody 4 4.33 3.85

Melody 5 4.33 4.19

Mean 4.22 3.61

The sound quality is very high
since it is extracted from a
sample library. However, the
resemblance is slightly lower
than is the case for the
synthesized tuba

With this additional transformation method included in the survey, we asked the partic-
ipants to re-evaluate the system performance in terms of quality and resemblance with the
original melodies. A total of 18 persons participated in the survey, all of them with some
musical background. The results are presented in Table 5.

Observing the results of the three methods (Tables 3, 4 and 5), it can be concluded
that regarding the similarity of the melodies created to a real tuba melody, the mean score
attained by the MIDI approach is significantly higher than the one obtained by the additive
synthesis approach, which reflects the difference in goodness between the models used in
the two schemes. However, in spite of this fact, the score of the resemblance to the origi-
nal melody is higher for the case of the melody created by the additive synthesis scheme.
This observation seems to suggest that an additive synthesis scheme, with an improved
musical instrument model, would be preferred over the MIDI approach for a singing voice
transformation application. Both methods obtained better results than the timbre morphing
approach, selected for the comparative evaluation, which, on the other hand, obtained rea-
sonable results in terms of resemblance with the original melody, which is probably related
to the fact that this is also a synthesis method.

Additionally, we asked the participants in the survey to classify the three methods in
order of preference. As shown in Table 6, the order of preference in all cases from best to
worst was: the MIDI transformation, the synthesized tuba and the tuba morphing. With a
mean value of 87.77 %, the MIDI transformation method was chosen the best approach for
all samples. In second place, the synthesized tuba was chosen with a mean value of 68.88 %.
And finally, the worst transformation method was the tuba morphing for the 77.77 % of the
participants. Detailed data regarding these choices are shown in Table 6.

Table 5 Results of timbre
morphing survey (mean values) It sounds like It resembles

a real tuba the original melody

Melody 1 1.27 3.72

Melody 2 1.27 2.88

Melody 3 1.5 3.05

Melody 4 1.61 3.72

Melody 5 1.55 3.94

Mean 1.44 3.46

Both parameters (quality and
resemblance) are lower than the
values obtained using our two
proposed methods
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Table 6 Classification of preferences between the three methods

Synthesized tuba MIDI tuba Tuba morphing

(a)

Best case

Melody 1 11.11 % 88.88 % 0 %

Melody 2 22.22 % 77.77 % 0 %

Melody 3 11.11 % 88.88 % 0 %

Melody 4 5.55 % 88.88 % 5.55 %

Melody 5 0 % 94.44 % 5.55 %

(b)

Intermediate case

Melody 1 83.33 % 11.11 % 5.55 %

Melody 2 66.66 % 16.66 % 16.66 %

Melody 3 55.55 % 11.11 % 33.33 %

Melody 4 55.55 % 11.11 % 33.33 %

Melody 5 83.33 % 5.55 % 11.11 %

(c)

Worst case

Melody 1 5.55 % 0 % 94.44 %

Melody 2 11.11 % 5.55 % 83.33 %

Melody 3 33.33 % 0 % 66.66 %

Melody 4 38.88 % 0 % 61.11 %

Melody 5 16.66 % 0 % 83.33 %

(a) Best method. With a mean value of 87.77 %, the best method chosen in all cases was the MIDI tuba. (b)
Intermediate method. The second best method chosen by the 68.88 % of the participants was the synthesized
tuba. (c) Worst method. The 77.77 % of the participants chose the tuba morphing as the worst method

4 Conclusions

In this paper we have presented a voice-to-tuba transformation system with applications in
museums, serious games and creative purposes. The system presented makes use of two
distinct music transformation methods based on additive synthesis and MIDI transcription.

A subjective evaluation of the system performance has been carried out by means of
an open survey. The results show that the MIDI approach led to melodies that sound like
actual tubas while the melodies created by the synthesis approach did not obtain such high
score regarding this aspect of the evaluation. However, the usage of the synthesis scheme
led to melodies with higher resemblance to the original sung melodies than using the MIDI
approach, which seems to suggest that the usage of an advanced synthesis model could
become the best choice for our task.

Furthermore, a comparison between the two implemented methods and an additional
timbre morphing-based scheme has also been done. A similar subjective evaluation has
been carried out through a second open survey, which highlighted the better quality and
resemblance attained by our two proposed approaches.
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Finally, it must not be forgotten that although the system described has proved to be
successful to transform into a tuba, it can still be improved by enhancing the sung melody
analysis scheme.
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