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42. Music Learning: Automatic Music Composition
and Singing Voice Assessment

Lorenzo J. Tardón, Isabel Barbancho, Carles Roig, Emilio Molina, Ana M. Barbancho

Traditionally, singing skills are learned and im-
proved by means of the supervised rehearsal of
a set of selected exercises. A music teacher evalu-
ates the user’s performance and recommends new
exercises according to the user’s evolution.

In this chapter, the goal is to describe a vir-
tual environment that partially resembles the
traditional music learning process and the music
teacher’s role, allowing for a complete interactive
self-learning process.

An overview of the complete chain of an inter-
active singing-learning system including tools and
concrete techniques will be presented. In brief,
first, the system should provide a set of training
exercises. Then, it should assess the user’s per-
formance. Finally, the system should be able to
provide the user with new exercises selected or
created according to the results of the evaluation.

Following this scheme, methods for the cre-
ation of user-adapted exercises and the automatic
evaluation of singing skills will be presented.
A technique for the dynamical generation of mu-
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sically meaningful singing exercises, adapted to
the user’s level, will be shown. It will be based on
the proper repetition of musical structures, while
assuring the correctness of harmony and rhythm.
Additionally, a module for singing assessment of
the user’s performance, in terms of intonation and
rhythm, will be shown.

In this chapter, we present several methods and tech-
niques to implement a complete educational tool for
learning to sing. Typically, singing skills are improved
by rehearsing a set of appropriate exercises under the
supervision of a music teacher. The role of this mu-
sic teacher is to evaluate the user’s performance, and
to recommend new exercises according to the user’s
evolution. Therefore, the presented methods allow the
creation of user-adapted exercises and evaluation of the
singing skills of the user automatically right after the
performance. The goal of this combined approach is
to create a virtual environment that partially resembles
the music teacher’s role, leading to a faster self-learning
process.

Two main submodules are presented in this chapter:
(1) an automatic generator of singing exercises, and
(2) a singing assessment module, which analyses
the user’s voice in order to rate the quality of the
singing performance. In the first, the generated singing

exercises are musically meaningful, based on repeated
structures, and can be adapted to suit the level of the
user. In the second, the module for singing assessment
compares the user’s performance with respect to the
automatically generated singing exercise, and rates the
user’s performance with two criteria: intonation and
rhythm. In Fig. 42.1, a block diagram of the complete
system is shown.

Using these methods, the singing learning process
becomes an iterative self-guided process. First, the sys-
temprovides a set of exercises. Second, the user sings the
suggested practices. Third, the system asseses the user’s
performance. And finally, it suggests new scores accord-
ing to the grade obtained. Note that the scores generated
are not precomposed but dynamically generated accord-
ing to the current level of the user. In this way, a gradual
and fully adapted learning process is assured.

This chapter is organized as follows. In Sect. 42.1
and 42.2, we present the related work on melody com-

© Springer-Verlag GmbH Germany 2018
R. Bader (Ed.), Springer Handbook of Systematic Musicology, https://doi.org/10.1007/978-3-662-55004-5_42

https://doi.org/10.1007/978-3-662-55004-5_42


Part
F
|42.2

874 Part F Music and Media

Audio Intonation rating
Rhythm rating

Automatic
generator of

singing exercises

Singing
assessment module

Visual feedback: scoresheet
Fig. 42.1 Block diagram of the
complete system

position and automatic singing assessment respectively.
Then, in Sect. 42.3 an automatic generator of singing
exercises is described. A scheme for automatic singing

assessment is described in Sect. 42.4. Finally, Sect. 42.5
draws some conclusions about the tool for singing
learning presented in this chapter.

42.1 Related Work on Melody Composition
The incorporation of different skills in the field of
music information retrieval related to the computa-
tional analysis and description of musical pieces al-
lows us to face different tasks like automatic music
transcription [42.1], or the identification of relations
between songs [42.2], among others. Furthermore, the
computational model of the human experience in the
musical field and the human brain processes in this
field are of great interest for psychology and musicol-
ogy [42.3].

In this context, the automatic generation of mu-
sical content is the topic considered. Often, music
is defined as organized sound [42.4] with order and
structure. Thus, systems to generate music must be
trained beforehand to learn a logic composition style
as stated in [42.5]. For this reason, an algorithm
for learning composition rules and patterns is out-
lined.

A set of descriptors must be analyzed in order to
model the style of the melodies. Concerning the tem-
poral descriptors, tempo and time signature, previous
works can be found. The work presented in [42.6] is
focused on the onset estimation based on the spectral
analysis. In [42.7], histograms to find the most repeated
interonset values are employed. Recently, methods for
structural analysis such as [42.8] based on a times-
pan tree for the structural similarity detection, which

can be addressed making use of the autosimilarity ma-
trix [42.9], were found.

In this chapter we consider an innovative approach
for tempo estimation based on the interonset interval
(IOI) histogram inspired by [42.6], followed by a fine
adjustment stage.

Regarding music composition, apart from com-
position schemes based on pattern reallocation and
variations, other methods are described in the bibli-
ography. In [42.10–12] Markov models are used for
the modeling and composition processes. The use
of genetic algorithms such as Biles’ GenJam sys-
tem [42.13] are also present in the field of automatic
music composition. Methods based on probabilistic
approaches such as Cope’s experiments in musical in-
telligence (EMI) [42.14, 15] also focus on the creation
of an automatic music composition framework. Inma-
musys [42.16] is another composition scheme based
on probabilistic structures. This method is very similar
to the one considered here, since both use previously
learned patterns to generate a new composition from
the reallocation of them. However, we considered the
presence in the composition system of a postprocessing
stage, intended to make all the motives in the database
learned fit in the composition. Note that Inmamusys re-
stricts the combination of motives to subsets previously
tagged as compatible.

42.2 Related Work on Voice Analysis for Assessment

Regarding the evaluation of singing voice, the litera-
ture reports a number of schemes for automatic singing
assessment [42.17–27]. These schemes are able to pro-
vide feedback about the user’s singing performance.

Commonly, in order to attain the desired objec-
tives, the audio is processed according to the following
steps. First, a low-level feature extraction process is
performed to find a set of frame-level vectors with
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meaningful information about the input. In the case of
singing analysis, the most important feature is funda-
mental frequency F0, although most of the approaches
also use other features such as energy, aperiodicity,
zero-crossing rate or certain auditory-based features.
In the literature, a wide set of approaches for F0 esti-
mation have been proposed, some of which are based
on the time domain, whereas others are based on the
frequency domain (see [42.28] for a comprehensive
review). One of the most-used approaches is the Yin
algorithm [42.29], since it is simple, effective and eas-
ily accessible. The Yin algorithm was developed by de
Cheveigné and Kawahara in 2002 [42.29], and it has
been found to be effective in many monophonic music
transcription systems [42.26, 30–32].

Then, the feature(s) extracted is postprocessed in
order to identify voiced regions (the voicing process)
and, in many cases, a later note-level segmentation
is also performed. The estimation of voiced sounds
can be performed using a wide variety of descriptors

at frame-level: F0 stability [42.33], root-mean square
(RMS) [42.34], aperiodicity [42.35], or zero-crossing
rate [42.36], etc.

Additionally, a note-level segmentation process of
the singing voice (also called singing transcription)
must be performed. To this end, some systems analyze
the low-level feature(s) using heuristic rules and a set
of thresholds [42.34, 37], whereas other approaches
are based on probabilistic models, especially hidden
Markov models [42.35, 38].

Finally, the assessment of singing skill is per-
formed by analyzing the postprocessed low-level fea-
tures and/or the note-level segmentation of the audio
input. Prior works have led to various solutions for
automatic singing rating. In general, all these systems
focus on intonation assessment with visually attractive
real-time feedback. Some of these systems use a ref-
erence melody (considered the target performance) in
order to assess the user’s performance, whereas other
approaches are melody independent.

42.3 Music Composition for Singing Assessment

In order to be able to accurately design automatic mu-
sic composition methods, it is necessary to know the
parameters involved in the composition. In this sec-
tion, we present both the parameters used by a novel
autonomous music compositor that generates new
melodies using a statistical model and the composition
scheme itself. Different aspects related to the traditional
way in which music is composed by humans such as
harmony and structure repetitions will be considered.

The approach is focused on an educational context.
The student should be able to automatically generate re-
inforcement melodies according to a particular musical
level enlarging the number of available training exer-
cises.

42.3.1 Learning Musical Parameters

The approach designed for the generation of contents
is based on the music theory method called osti-
nato [42.39]. This method considers the composition of
music on the basis of pattern repetition with harmonic
variations in such a way that the repetition of the mo-
tives creates the melody structure.

Thus, rhythm patterns, pitch contours, har-
monic progressions and tempo structures must be
learned [42.40].

Thus, a database of musical parameters can be used
to model the training level of certain musical pieces, as
in [42.41]. Since the main objective is to develop a mu-

sic model for the automatic creation of compositions
with style replication, the discovery of this type of in-
formation and the development of specific procedures
to make use of the different pieces of information to
model music corresponding to different training levels
are considered. This can be done on the basis of a prob-
abilistic analysis of rhythm and pitch patterns stored in
a database filled with music samples of different com-
plexity levels. In Fig. 42.2, a diagram of a suitable
analysis system is presented.

According to the characterization parameters re-
quired, the database can be divided into three levels

Tempo estimation

Time signature
estimation

Rhythm patterns
detection

Pitch extraction
(MIDI n°)

DATABASE

MIDI

Pitch

Rhythm

Tempo

Fig. 42.2 Illustrative scheme of the music analysis system
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hierarchically organized corresponding to: (L-1) time
signatures, (L-2) rhythm patterns and (L-3) pitch con-
tours (Fig. 42.3).

The measures the training samples will be split into
will be the elements stored in the database. These ele-
ments will be used for the composition of novel music
scores. In order to achieve this goal, the bar length has
to be established for proper measure splitting. The bar
length can be manually set but also a system to perform
this task automatically can be devised. Thus, tempo es-
timation is required in first place.

The tempo can be extracted easily by analyzing
Musical Instrument Digital Interface (MIDI) metadata
messages [42.42], if present. But this information can
also be incorrectly stored. In order to develop a ro-
bust estimation scheme, an algorithm to estimate the
tempo and time signature from MIDI files can be
used. Note that the availability of correct tempo in-
formation is critical in order to relate the duration of
the notes obtained by means of the analysis of Note
On and Note Off messages [42.42] to musical fig-
ures.

Note that according to [42.43], the target parameters
in this work are the basic ingredients for the compo-
sition of music: rhythm, pitch motives (melody) and
harmony (which is considered at the score composition
stage).

Now, we consider the specific estimation stages.

Temporal Estimations
The tempo and the time signature have to be estimated
in order to correctly perform bar separation and prop-
erly split rhythmic patterns. Note that here we consider
a rhythmic pattern to be equivalent to a complete mea-
sure from the input training data.

Tempo Estimation. The algorithm considered for
tempo estimation is inspired by the work presented
in [42.7]. However, in our scenario, the analyzed IOIs
are directly extracted from the melody. Initially, the
most repeated IOI value can be considered a candidate
pulse, or tactus [42.44]. This pulse is related to tapping
or dancing while listening to a piece of music [42.45].
However, some considerations must be taken into ac-
count:

� Resting periods are not explicitly extracted. MIDI
files contain information about the notes solely
(Note On and Note Off events [42.42]). However,
resting periods can be indirectly extracted and must
be used to properly estimate the tempo.� The tactus extracted can be a multiple or a divisor
of the actual tactus. By setting a valid tempo range,
this value can be corrected.

� The tactus estimated will not be the exact one
due to the discrete nature of the histogram. The
value can be finely corrected in a postprocessing
stage.

The objective of the fine adjustment of the tactus
is to find the value that causes the lowest displacement
from the constant beat and the input file onsets. This can
be achieved by defining a specific model to interpolate
the histogram of the IOIs.

Then, the tactus has to be associated with a certain
rhythmic element to define the duration of the quar-
ter note and for the estimation of the tempo. Since the
range of valid tempos in music is large – from Largo
(40� 60 quarters per minute) to Presto (180� 200
quarters per minute) [42.46] – the tempo range must
be manually reduced in order to establish an accu-
rate relation between durations and musical elements.
A suitable hypothesis is that the tempo of the train-
ing data is Moderato (76� 108 quarters per minute).
Anyway, a mapping can always be defined by calcu-
lating the duration of each rhythm figure in the range
selected.

As described in [42.47], the tempo estimation al-
gorithm often estimates doubled or halved tempos.
This is a normal behavior caused by the tempo con-
cept itself [42.48]. The tempo is actually subjective,
which means that some editors may use shorter rhythm
figures reducing the selected tempo, while other can
do the opposite, to represent the same performance
speed.

Finally, observe that the duration of the metric fig-
ures is well known after the tempo is estimated. The
duration of each measure can be obtained by multiply-
ing the duration of the pulse by the number of pulses
that fit in one bar. So, the next goal is estimate the bar
duration. The approach for this purpose can be based on
the evaluation of different bar split scenarios for several
tentative lengths. Then, some features like the number
of repeated bars, the number of bars and the number of
split notes can be considered.

Time Signature Estimation. The estimation of the
time signature can be based on the analysis of bar rep-
etitions, which can be done using a multiresolution
analysis scheme [42.49, 50] to obtain the bar length
that best suits the input melody among a set of candi-
dates.

The rhythm self-similarity matrix (RSSM), as de-
scribed in [42.51], is useful for the purpose at hand.
The input melodies can be split into the k candidate bar
lengths in order to build the RSSM using the tactus as
a unit. Note that the analysis system will create k RSSM
matrices, one for each of the candidates. Using those
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Fig. 42.3 Representation of the
hierarchical database considered to
store and organize music parameters
for music composition based on
pattern repetitions

RSSMs, the following descriptors can be extracted and
considered in the estimation process:

� Number of repeated bars: the amount of different
bars repeated along the split performed for a certain
length candidate. The most repeated bar will, more
probably, perform a proper separation.� Number of repeated bar instances: the average num-
ber of instances per repeated bar. The larger this
number, the more probable the separation will be.� Number of ties between bars: the number of notes
divided between two bars for the candidate length.
The lower the number of ties between bars, the more
probable the separation will be.� Number of detected bars: the number of bar splits
in the original stream. The number of bars tends to
be a power of two.

Note that the number of repeated bars, bar instances
and ties must be normalized by the total number of bars
detected to give rise to comparable measures. In order
to classify the time signature of the input melodies us-
ing these descriptors, different classification schemes
can be considered, such as the J48 decision tree classi-
fier [42.52], or another one based on sequential minimal
optimization (SMO) [42.53], which are available in the
Weka machine learning software suite [42.54].

Rhythm Patterns
Rhythm is probably the musical feature more closely
related to the structure of a musical composition. The
parameters obtained by the tempo estimation stage (see
previous section) can be used to quantize the dura-
tion information extracted from the input MIDI file and
relate the intervals to the corresponding figure dura-
tion.

Observe that splitting into measures is accom-
plished by applying thresholds to the accumulative sum
of measure durations of the input.

If the accumulation of durations equals the thresh-
old, the measure splitter gets the measure and stores it
in the database since the measure is complete. If the ac-
cumulation of durations overpasses the threshold, then
a tie between bars exists and the estimated time sig-
nature at the current point is assumed to be correct,
although a note is between two bars. Also, the note
that overpasses the measure duration must be split into
two notes: one with the proper duration to complete the
previous bar, and another one with the remaining dura-
tion that will be part of the following bar, to remove the
tie.

The pitch contour of the rhythmic patterns obtained
by the splitting scheme are stored (Fig. 42.3). Later,
patterns with more contour versions will be selected
with higher probability than others by the composition
system. This choice is oriented to the replication of
the probabilistic model of the rhythmic patterns in the
melodies composed.

Pitch Progression
The pitch contour [42.46] is more important for the gen-
eration scheme than the notes themselves since, in order
to maintain the personality and the style of the reused
motives, the pitch contour must be preserved [42.55].
Note that the notes are specified by the MIDI messages.

Summing up, the actual notes are not necessary if
a harmony corrector is used to adapt the melody to the
chord progressions. Also, the use of variations instead
of the unmodified pitch patterns provides flexibility so
that the patterns can be adapted to the harmonies and,
additionally, the output melody can be set up to any de-
sired key signature.
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42.3.2 Melody Generator

The melody generator will use the rhythmic and
pitch information and the predefined chord progres-
sion stored in the database (Fig. 42.3) to create new
melodies that replicate the style or complexity of the
songs previously analyzed. The melody generation can
be performed by means of the concatenation of rhyth-
mic patterns according to composition rules defined by
the analyzed music samples and by previously selected
musical parameters (time signature, tempo for a chosen
complexity level).

First of all, the initial tonality, the time signature,
the number of bars and the dataset of parameters cor-
responding to a certain training level can be selected
beforehand. Then, other specific parameters can be se-
lected or modified: all these are presented in Table 42.1.

Then, some rules have been considered to be auto-
matically applied in order to guide the pattern selection,
to ensure the proper harmony adaptation and to guar-
antee the continuity of the pitch contour. In order to
define the rules, Schellenberg’s simplification [42.56]
of Narmour’s Realization-Expectation model [42.57] is
perfectly suitable. A specific algorithm based on music
theory concepts can be used for harmony adaptation at
each measure [42.58]. Figure 42.4 shows a schematic
representation of the stages of the melody generation
algorithm.

In the next subsections, the steps performed by the
melody generator proposed will be described in detail.

Pattern Selection
The items i the dataset that fulfill the time signature
requirement (database level 1) chosen by the user be-
forehand will be selected. Then, among these patterns,
stored in the database after the analysis stage, the ones
required for the creation of the rhythmic structure will
be selected. For example, if the melody structure is de-
fined as A-B-B-A, then two rhythmic patters (from the
database, level 2), will be acquired.

Table 42.1 Music generation: selectable parameters

Global level
� Initial tonality
� Time signature
� Number of bars
� Style database
Phrase level
� Predefined rhythmic pattern
� Predefined harmonic pattern
Measure level
� Tonality
� Chord
� Rhythmic pattern

After linking each measure in the structure to a par-
ticular rhythm pattern, a pitch contour is selected ran-
domly among all the pitch version for each of the
motives (from database, level 3).

Note that at this stage, the pitch progression selected
may not be in accordance with the harmony set up. At
a later stage, a chord transposition system should adapt
the pitch curve to fulfill the given harmony progression
keeping the continuity of the melodic curve.

Harmony Progression
A user can design a particular chord progression. How-
ever, note that the chord progression is a very important
parameter for the musical success: there are combina-
tions of chords that do not sound well together while
others do [42.59]. So, in order to guide the selection of
the chord progression, a set of harmonic progressions
that sound well together can be defined [42.60].

The reason why some harmonic progressions sound
well while others do not is related to the listener
expectation [42.57], which is linked to the cultural en-
vironment and the preference of the listener for some
chord transitions rather than others. The predefined
progressions considered follow the Western music the-
ory [42.60]. These progressions are I-ii-V-I, I-vii-I-V,
I-I-IV-V or I-IV-V-I, among others.

Finally, in order to adapt the patterns selected in the
previous stage, a melody transposition scheme based on
music theory rules must be employed. This method will
be described in next section.

Database

Start

Selected
patterns

Selected time
signatures

Output melody

Selection of
parameters

Selection of
patterns

Harmony structure
Tonality
Modulations

Expectation
correction

Chord
transposition

Selected rhythm
structures

Fig. 42.4 Scheme of the melody generator
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Chord Transposition
The chord transposition system must perform the
proper changes to the sequence of notes to ensure that
the harmony attained is the one selected and to guaran-
tee the continuity of the melodic line according to the
expectation model [42.56, 57]. This can be achieved by
applying a musical harmony adaptation method based
on level changing [42.58] together with additional con-
strains derived from the expectation model.

As the simple concatenation of patterns causes the
appearance of transitions that do not sound natural, the
idea to fix this issue is to generate a Narmour candi-
date [42.57] that properly follows the melodic line in
the posterior measure. This candidate should fulfill the
rules regarding the musical expectation.

The system analyses the last two notes of each mea-
sure to generate a new note. These two notes (called
implication) are used to evaluate a third note (called re-
alization), which will be the candidate note [42.56]. The
following items are observed for the generation of the
candidate notes [42.56]:

� Interval: A small interval [42.61] (less than a tri-
tone) implies that the next note should follow the
direction of the pitch progression. Otherwise, it
would not achieve the expectation.� Pitch jump: The pitch jump after a small interval
should be similar to the previous one and in the
same direction, according to the previous rule.� Progression of the intervals:
– If the implication interval is less than two semi-

tones, then the third note should be back closer
to the first note of the implication.

– After a change in the direction or a large in-
terval, the realization interval should be smaller
than a tritone.

Recall that the position of the notes in the mea-
sures is key for the chord transposition stage. So,
first, the chord notes, considered responsible of the
harmony definition, and the nonchord notes, com-
monly called passing notes, are identified [42.59]. This
process can be based on the analysis of the posi-
tion of each note within each measure. The notes
in downbeats will be considered chord notes, whilst
those placed in upbeats will be considered nonchord
notes.

Then, the chord transposition subsystem applies
two different procedures to these two types of notes:

� Accented notes must belong to the chord
– First chord note (or Narmour candi-

date [42.57]): This note is assigned to the
closest pitch of the chord.

– Secondary chord notes: Following the origi-
nal pitch contour, secondary accented notes are
moved to the closest pitch in the contour direc-
tion.� Unaccented notes: The original interval between

the previous note and the current note is repli-
cated.

When the pitch and harmony adaptation processes
are finished for every measure, the creation of a new
melody is completed. Then, the performance on the
melody by the user must be assessed.

42.4 Singing Assessment

In this section, we consider the problem of singing as-
sessment for music learning. The descriptions will be
based on the algorithm described in [42.62]. This al-
gorithm evaluates the user’s singing performance by
comparing the processed audio against a reference
melody.

In our case, the reference melody corresponds to the
final output of the methods described in previous sec-
tions.

The main steps often required for the task at hand
are illustrated in Fig. 42.5. These steps include the
following global tasks: fundamental frequency (F0) ex-
traction and singing assessment based on F0 alignment.

Next, we will briefly describe these steps following
the approach selected, although other relevant schemes
can be found in the literature [42.19, 25, 63].

42.4.1 F0 Extraction

The Yin algorithm [42.29] has been found to be a good
choice to extract the F0 vector. This evolves from the
idea of the autocorrelation method [42.64] to introduce
relevant improvements. The modifications are based on
the definition of the so-called cumulative mean normal-
ized difference function d0

t.�/. This function peaks at
the local period with lower deviations than the conven-
tional autocorrelation function [42.29]. The cumulative
mean normalized difference function is defined upon
the squared difference function dt.�/ given by

dt.�/D
tCWX
jDt

.x.j/� x.jC �//2 ; (42.1)
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measures
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Fig. 42.5 A block diagram of the method for automatic
singing assessment proposed in [42.62]

where � 2 Œ0;W/ is an integer lag variable, W is the
window size, x.�/ is the amplitude of the input signal
x at time � and t is the time index. Then, this function is
normalized to give rise to the cumulative mean normal-
ized difference function

d0

t.�/D

8̂̂
<
ˆ̂:
1 � D 0

dt.�/
1

�

P
jD1 �dt.j/

otherwise : (42.2)

The Yin algorithm finds the local minimum in d0

t.�/
with the smallest � 0. Afterwards, a parabolic interpo-
lation stage is performed using d0

t.�
0/, d0

t.�
0 � 1/ and

d0

t.�
0 C 1/ to obtain an accurately estimated local min-

imum at �p. This value can be used to calculate the
F0 with F0 D fs=�p, where fs stands for the sampling
rate.

The aperiodicity measure or voicing parameter is
given by apD d0

t.�p/. This parameter is useful to iden-
tify voiced/unvoiced frames [42.62].

Note that the original Yin algorithm, implemented
in Matlab, can be found in [42.65].

42.4.2 Assessment of Singing Voice

Once the F0s of the user’s performance and the refer-
ence melodies are extracted, they must be compared.
A suitable method to align the functions for compari-
son is dynamic time warping (DTW) [42.66, 67]. This
technique is useful for finding an optimal match be-
tween two sequences under certain restrictions. Note

that the definition of the optimality criterion of the
match strongly affects the performance of the align-
ment.

In [42.62], the cost matrix M for the DTW algo-
rithm is defined as (other choices could be consid-
ered)

Mij Dmin
n
.F0T.i/�F0U.j//

2 ; ˛
o
; (42.3)

where F0T.i/ is the F0 of the target melody in the frame
i, and F0U.j/ represents the F0 of the user’s perfor-
mance in the frame j.Mij is the cost and ˛ is a constant.
Note that using this scheme, when the squared differ-
ence between F0s becomes larger than ˛, the situation
is considered to correspond to a spurious value and its
contribution to the cost matrix is bounded.

The DTW algorithm uses the cost matrix to pro-
vide an optimal path Œik; jk� for k 2 1 : : :K, where
K is the length of the path, matching the two input
signals. Figure 42.6 illustrates the alignment perfor-
mance.

In [42.68], a Matlab implementation of the DTW
algorithm can be found.

DTW as a Similarity Measure
The path for the alignment between the user’s per-
formance and the reference melody conveys relevant
information for singing evaluation. Actually, the DTW
is suitable for assessing both the intonation and the
rhythmic performance [42.62].

DTW to Assess Intonation. The cost matrix M pro-
vides information about the instantaneous deviation of
the sung note with respect to the reference, as well as in-
formation about the overall F0 deviation. Consequently,
the total cost of the optimal alignment path found can
be used as the similarity measure for intonation as-
sessment. Then, the total intonation error (TIE) can be
computed as

TIED
KX

kD1

Mikjk ; (42.4)

where M is the cost matrix previously defined, and
Œik; jk�, with k 2 1 : : :K, represents each of the steps of
the optimal path, K being the length of the path.

DTW to Assess Rhythm. DTW is also a powerful pro-
cedure for automatic rhythm assessment. The specific
shape of the optimal path contains the necessary infor-
mation about the rhythmic performance.

In the cost matrix of the DTW, a diagonal straight
line represents a perfect rhythmic performance (no de-
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Fig. 42.6 F0 alignment between
a user’s performance and the reference
melody using dynamic time warping
(DTW)

viation with respect to the target melody). A poor rhyth-
mic performance would yield large deviations with
respect to such a straight line. Figure 42.7 illustrates
this idea.

The analysis of the deviations of the alignment path
found with respect to the ideal path provides relevant
rhythm assessment information. Specifically, a straight
line with a slope different from the ideal one repre-
sents good rhythmic performance in a different tempo.
On the other hand, the straightness of the path reveals
the presence of erratic rhythmic errors. The straightness
can be quantified by performing an ad hoc linear ap-
proximation to the path found, and then analyzing the
error.

Fig. 42.7 Sample of the usage of DTW with F0 signal
for rhythm assessment. Rhythmically stable user’s perfor-
mance (solid line) and ideal rhythm performance (dotted
line) I

User performance

Ideal performance

0 5 10 2015

Time vector of the user performance (s)

Time vector of the target melody (s)

0

5

10

15

20

42.5 Summary

In this chapter, a complete approach to the development
of computational tools for singing learning has been
proposed.

Two main subsystems are required for the singing
learning purpose: a module for the automatic generation
of singing exercises with selectable complexity levels,
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and a module for the automatic assessment of the user’s
singing performance.

A completemelody generator scheme, including the
required analysis stages, has been presented. The gen-
erator described is able to automatically generate new
melodies adapted to a certain music level selected be-
forehand.

An approach for the automatic assessment of
singing voice has also been described. The method
selected compares the F0 of the user’s performance

against the reference F0 of an automatically generated
melody. The scheme provides an evaluation of both in-
tonation and rhythm.
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