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ABSTRACT

In this paper, we analyse the evaluation strategies used
in previous works on automatic singing transcription, and
we present a novel, comprehensive and freely available
evaluation framework for automatic singing transcription.
This framework consists of a cross-annotated dataset and a
set of extended evaluation measures, which are integrated
in a Matlab toolbox. The presented evaluation measures
are based on standard MIREX note-tracking measures, but
they provide extra information about the type of errors ma-
de by the singing transcriber. Finally, a practical case of
use is presented, in which the evaluation framework has
been used to perform a comparison in detail of several
state-of-the-art singing transcribers.

1. INTRODUCTION

Singing transcription refers to the automatic conversion of
a recorded singing signal into a symbolic representation
(e.g. a MIDI file) by applying signal-processing meth-
ods [1]. One of its renowned applications is query-by-
humming [5], but other types of applications also are re-
lated to this task, like singing tutors [2], computer games
(e.g. Singstar 1 ), etc. In general, singing transcription is
considered a specific case of melody transcription (also
called note tracking), which is more general problem. How-
ever, singing transcription not only relates to melody tran-
scription but also to speech recognition, and still nowadays
it is a challenging problem even in the case of monophonic
signals without accompaniment [3].

In the literature, various approaches for singing tran-
scription can be found. A simple but commonly referenced
approach was proposed by McNab in 1996 [4], and it re-
lied on several handcrafted pitch-based and energy-based
segmentation methods. Later, in 2001 Haus et al. used
a similar approach with some rules to deal with intona-
tion issues [5], and in 2002, Clarisse et al. [6] contributed
with an auditory model, leading to later improved systems

1 http://www.singstar.com
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such as [7] (later included in MAMI project 2 and today in
SampleSumo products 3 ). Additionally, other more recent
approaches use hidden Markov models (HMM) to detect
note-events in singing voice [8, 9, 11]. One of the most
representative HMM-based singing transcribers was pub-
lished by Ryynänen in 2004 [9]. More recently, in 2013,
another probabilistic approach for singing transcription has
been proposed in [3], also leading to relevant results. Re-
garding the evaluation methodologies used in these works
(see Sections 2.1 and 3.1 for a review), there is not a stan-
dard methodology.

In this paper, we present a comprehensive evaluation
framework for singing transcription. This framework con-
sists of a cross-annotated dataset (Section 2) and a novel,
compact set of evaluation measures (Section 3), which re-
port information about the type of errors made by the sin-
ging transcriber. These measures have been integrated in
a freely available Matlab toolbox (see Section 3.3). Then,
we present a practical case in which the evaluation frame-
work has been used to perform a comparison in detail of
several state-of-the-art singing transcribers (Section 4). Fi-
nally, some relevant conclusions are presented in Section 5

2. DATASETS

In this section, we review the evaluation datasets used in
prior works on singing transcription , and we describe the
proposed evaluation dataset and our strategy for ground-
truth annotation.

2.1 Datasets used in prior works

In Table 1, we present the datasets used in some relevant
works on singing transcription. Note that none of the da-
tasets fully represents the possible contexts in which sin-
ging transcription might be applied, since they are either
too small (e.g. [5,6]), either very specific in style (e.g. [11]
for opera and [3] for flamenco), or either they use an anno-
tation strategy that may be subjective (e.g. [5, 6]), or only
valid for very good performances in rhythm and intonation
(e.g. [8, 9]). In addition, only the flamenco dataset used
in [3] is freely available.

2.2 Proposed dataset

In this section we describe the music collection, as well as
the annotation strategy used to build the ground-truth.

2 http://www.ipem.ugent.be/MAMI
3 http://www.samplesumo.com
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Author Year Dataset Audio Music Singing Ground-truth (GT) Tunning Freely
size quality style style annotation devs. anno- avai-

strategy tated in GT lable
McNab [4] 1996 NONE

Haus & 2001 20 short Low & mode- Popular and Syllables: Annotated by No No
Pollastri [5] melodies rated noise scales ’na-na’... one musician

Clarisse 2002 22 short Low & mode- Popular Singing with & Annotation by No No
et al. [6] melodies rated noise without lyrics one musician

Viitaniemi 2003 66 melodies High quality Folk songs Singing, Original score
et al. [8] (120 (studio & scales humming used as No No

Ryynänen 2004 minutes) conditions) & whistling ground-truth
et al. [9]
Mulder 2004 52 melo. Good & mode- Popular Syllables, Team No No
et al. [7] (1354 notes) rated noise songs singing & of

whistling musicologists
Kumar 2007 47 songs Good Indian Syllables: Manual annot. of No No

et al. [10] (2513 notes) music /la/ /da/ /na/ vowel onsets [REf]
Krige 2008 13842 High quality Opera Time align- No No

et al. [11] notes but strong lessons Syllables ment using
reverberation & scales Viterbi

Gómez & 2013 72 excerpts Good & Flamenco Lyrics & Musicians team Yes Yes
Bonada [3] (2803 notes) slightly noisy songs ornaments (cross-annotation)

Table 1. Review of the evaluation datasets used in prior works on singing transcription. Some details about the dataset are
not provided in some cases, so certain fields can not be expressed in the same units (e.g. dataset size).

2.2.1 Music collection

The proposed dataset consists of 38 melodies sung by adult
and child untrained singers, recorded in mono with a sam-
ple rate of 44100Hz and a resolution of 16 bits. Generally,
the recordings are not clean and some background noise is
present. The duration of the excerpts ranges from 15 to 86
seconds and the total duration of the whole dataset is 1154
seconds. This music collection can be broken down into
three categories, according to the type of singer:

• Children (our own recordings 4 ): 14 melodies of tra-
ditional children songs (557 seconds) sung by 8 dif-
ferent children (5-11 years old).

• Adult male: 13 pop melodies (315 seconds) sung
by 8 different adult male untrained singers. These
recordings were randomly chosen from the public
dataset MTG-QBH 5 [12].

• Adult female: 11 pop melodies (281 seconds) sung
by 5 different adult female untrained singers, also
taken from MTG-QBH dataset.

Note that in this collection the pitch and the loudness can
be unstable, and well performed vibratos are not frequent.

2.2.2 Ground-truth: annotation strategy

The described music collection has been manually anno-
tated to build the ground truth 4 . First, we have transcribed
the audio recordings with a baseline algorithm (Section
4.2), and then all the transcription errors have been cor-
rected by an expert musician with more than 10 years of
music training. Then, a second expert musician (with 7
years of music training) checked all the annotations until
both musicians agreed in their correctness. The transcrip-
tion errors were corrected by listening, at the same time, to
the synthesized transcription and the original audio. The

4 Available at http://www.atic.uma.es/ismir2014singing
5 http://mtg.upf.edu/download/datasets/mtg-qbh

musicians were given a set of instructions about the spe-
cific criteria to annotate the singing melody:

• Ornaments such as pitch bending at the beginning
of the notes or vibratos are not considered indepen-
dent notes. This criterion is based on Vocaloid’s 6

approach, where ornaments are not modelled with
extra notes.

• Portamento between two notes does not produce an
extra third note (again, this is the criteria used in
Vocaloid).

• The onsets are placed at the beginning of voiced seg-
ments and in each clear change of pitch or phoneme.
In the case of ’l’, ’m’, ’n’ voiced consonants + vowel
(e.g. ’la’), the onset is not placed at the beginning of
the consonant but at the beginning of the vowel.

• The pitch of each note is annotated with cents reso-
lution as perceived by the team of experts. Note that
we annotate the tuning deviation for each indepen-
dent note.

3. EVALUATION MEASURES

In this section, we describe the evaluation measures used
in prior works on automatic singing transcription, and we
present the proposed ones.
3.1 Evaluation measures used in prior works

In Table 2, we review the evaluation measures used in some
relevant works on singing transcription. In some cases,
only the note and/or frame error is provided as a compact,
representative measure [5, 9], whereas other approaches
provide extra information about the type of errors made
by the system using dynamic time warping (DTW) [6] or
Viterbi-based alignment [11]. In our case, we have taken
the most relevant aspects of these approaches and we added
some novel ideas in order to define a novel, compact and
comprehensive set of evaluations.

6 http://www.vocaloid.com
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Author Year Evaluation measures
McNab 1996 NONE

Haus &
Pollastri [5] 2001 Rate of note pitch errors (segmen-

tation errors are not considered)

Clarisse
et al. [6] 2002

DTW-based measurement of various
note errors, e.g. insertions deletions
and substitutions.

Viitaniemi
et al. [8] 2003

Frame-based errors. Do not report
information about type of errors
made.

Ryynänen
et al. [9] 2004

Note-based and frame-based errors.
Do not report information about
type of errors made.

Mulder
et al. [7] 2004

DTW-based measurement of various
note errors, e.g. insertions deletions
and substitutions.

Kumar
et al. [10] 2007 Onset detection errors (pitch and

durations are ignored).

Krige
et al. [11] 2008

Viterbi-based measurement
of deletions, insertions and
substitutions (typical evaluation in
speech recognition).

Gómez
& Bonada [3] 2013

MIREX measures for audio
melody extraction
and note-tracking. Do
not report information
about type of errors made.

Table 2. Evaluation measures used in prior works on sin-
ging transcription.

3.2 Proposed measures

In this section, we firstly present the notation and some
needed definitions that are used in the rest of sections, and
then we describe the evaluation measures used to quan-
tify the proportion of correctly transcribed notes. Finally,
we present a set of novel evaluation measures that inde-
pendently report the importance of each type of error. In
Figure 1 we show an example of the types of errors con-
sidered.
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Figure 1. Examples of the different proposed measures.

3.2.1 Notation

The i:th note of the ground-truth is noted as nGT
i , and the

j:th note of the transcription is noted as nTR
j . The total

number of notes in the ground-truth and the transcription

are NGT and NTR, respectively. Regarding the expressions
used in the for correct notes, we have used Precision, Re-
call and F-measure, which are defined as follow:

CXPrecision =
NGT

CX
NGT (1)

CXRecall =
NTR

CX
NTR (2)

CXF-measure = 2 · CXPrecision · CXRecall

CXPrecision + CXRecall
(3)

where CX makes reference to the specific category of cor-
rect note: Correct Onset & Pitch & Offset (X = COnPOff),
Correct Onset & Pitch (X = COnP) or Correct Onset (X
= COn). Finally, NGT

CX and NTR
CX are the total number of

matching CX conditions in the ground-truth and the tran-
scription, respectively.

Regarding the measures used for errors, we have com-
puted the Error Rate with respect to NGT, or with respect
to NTR, as follow:

XRateGT =
NGT

X
NGT (4)

XRateTR =
NTR

X
NTR (5)

Finally, in the case of segmentation errors (Section 3.2.5),
we also compute the mean number of notes tagged as X in
the transcription for each note tagged as X in the ground-
truth. This magnitude has been expressed as a ratio:

XRatio =
NTR

X
NGT

X
(6)

3.2.2 Definition of correct onset/pitch/offset

The definitions of correctly transcribed notes (given in Sec-
tion 3.2.3) consists of combinations of three independent
conditions: correct onset, correct pitch and correct off-
set. We have defined these conditions according to MIREX
(Multiple F0 estimation and tracking and Audio Onset De-
tection tasks), and so they are defined as follow:

• Correct Onset: If the note’s onset of a transcribed note
nTR
j is within a ±50ms range of the onset of a ground-truth

note nGT
i , i.e.:

onset(nTR
j ) ∈ [onset(nGT

i )− 50ms, onset(nGT
i ) + 50ms] (7)

then we consider that nGT
i has a correct onset with respect

to nTR
j .
• Correct Pitch: If the note’s pitch of a transcribed note

nTR
j is within a ±0.5 semitones range of the pitch of a

ground-truth note nGT
i , i.e.:

pitch(nTR
j ) ∈ [pitch(nGT

i )− 0.5 st, pitch(nGT
i ) + 0.5 st] (8)

then we consider that nGT
i has a correct pitch with respect

to nTR
j .
• Correct Offset: If the offsets of the ground-truth note

nGT
i and the transcribed note nTR

j are within a range of
±20% of the duration of nGT

i or ±50 ms, whichever is
larger, i.e.:

offset(nTR
j ) ∈ [offset(nGT

i )− OffRan, offset(nGT
i ) + OffRan] (9)

where OffRan = max(50ms, duration(nGT
i )), then we con-

sider that nGT
i has a correct offset with respect to nTR

j .
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3.2.3 Correctly transcribed notes

The definition of “correct note” should be useful to mea-
sure the suitability of a given singing transcriber for a spe-
cific application. However, different applications may re-
quire a different definition of correct note. Therefore, we
have chosen three different definitions of correct note as
defined in MIREX:

• Correct onset, pitch and offset (COnPOff): This is
a standard correctness criteria, since it is used in MIREX
(Multiple F0 estimation and tracking task), and it is the
most restrictive one. The note nGT

i is assumed to be cor-
rectly transcribed into the note nTR

j if it has correct on-
set, correct pitch and correct offset (as defined in Section
3.2.2). In addition, one ground truth note nGT

i can only be
associated with one transcribed note nTR

j . In our evalua-
tion framework, we report Precision, Recall and F-measure
as defined in Section 3.2.1:

COnPOffPrecision, COnPOffRecall and COnPOffF-measure.

• Correct Onset, Pitch (COnP): This criteria is also used
in MIREX, but it is less restrictive since it just considers
onset and pitch, and ignores the offset value. Therefore,
in COnP criteria, a note nGT

i is assumed to be correctly
transcribed into the note nTR

j if it has correct onset and
correct pitch. In addition, one ground truth note nGT

i can
only be associated with one transcribed note nTR

j . In our
evaluation framework, we report Precision, Recall and F-
measure:

COnPPrecision, COnPRecall and COnPF-measure.

• Correct Onset (COn): Additionally, we have included the
evaluation criteria used in MIREX Audio Onset Detection
task. In this case, a note nGT

i is assumed to be correctly
transcribed into the note nTR

j if it has correct onset. In ad-
dition, one ground truth note nGT

i can only be associated
with one transcribed note nTR

j . In our evaluation frame-
work, we report Precision, Recall and F-measure:

COnPOffPrecision, COnPOffRecall and COnPOffF-measure.

3.2.4 Incorrect notes with one single error

In addition, we have included some novel evaluation mea-
sures to identify the notes that are close to be correctly tran-
scribed, but they fail in one single aspect. These measures
are useful to identify specific weaknesses of a given sin-
ging transcriber. The proposed categories are:

• Only-Bad-Onset (OBOn): A ground-truth note nGT
i is

labelled as OBOn if it has been transcribed into a note nTR
j

with correct pitch and offset, but wrong onset. In order to
detect them, firstly we find all ground-truth notes with cor-
rect pitch and offset, taking into account that one ground-
truth note can only be associated with one transcribed note.
Then, we remove all notes previously tagged as COnPOff
(Section 3.2.3). The reported measure is the rate of OBOn
notes in the ground-truth:

OBOnRateGT

• Only-Bad-Pitch (OBP): A ground-truth note nGT
i is la-

belled as OBP if it has been transcribed into a note nTR
j

with correct onset and offset, but wrong pitch. In order to
detect them, firstly we find all ground-truth notes with cor-
rect onset and offset, taking into account that one ground-
truth note can only be associated with one transcribed note.
Then, we remove all notes previously tagged as COnPOff
(Section 3.2.3). The reported measure is the rate of OBP
notes in the ground-truth:

OBPRateGT

• Only-Bad-Offset (OBOff): A ground-truth note nGT
i is

labelled as OBOn if it has been transcribed into a note nTR
j

with correct pitch and onset, but wrong offset. In order to
detect them, firstly we find all ground-truth notes with cor-
rect pitch and onset, taking into account that one ground-
truth note can only be associated with one transcribed note.
Then, we remove all notes previously tagged as COnPOff
(Section 3.2.3). The reported measure is the rate of OBOff
notes in the ground-truth:

OBOffRateGT

3.2.5 Incorrect notes with segmentation errors

Segmentation errors refer to the case in which sung notes
are incorrectly split or merged during the transcription. De-
pending on the final application, certain types of segmenta-
tion errors may not be important (e.g. frame-based systems
for query-by-humming are not affected by splits), but they
can lead to problems in many other situations. Therefore,
we have defined two evaluation measures which are infor-
mative about the segmentation errors made by the singing
transcriber.

• Split (S): A split note is a ground truth note nGT
i that

is incorrectly segmented into different consecutive notes
nTR
j1

, nTR
j2

· · · nTR
jn

. Two requirements are needed in a
split: (1) the set of transcribed notes nTR

j1
, nTR

j2
, . . . nTR

jn

must overlap at least the 40% of nGT
i in time (pitch is ig-

nored), and (2) nGT
i must overlap at least the 40% of every

note nTR
j1

, nTR
j2

, . . . nTR
jn

in time (again, pitch is ignored).
These requirements are needed to ensure a consistent rela-
tionship between ground truth and transcribed notes. The
specific reported measures are:

SRateGT and SRatio

Note that in this case SRatio > 1.
• Merged (M): A set of consecutive ground-truth notes

nGT
i1

, nGT
i2

, · · · nGT
in

are considered to be merged if they
all are transcribed into the same note nTR

j . This is the com-
plementary case of split. Again, two requirements must be
true to consider a group of merged notes: (1) the set of
ground truth notes nGT

i1
,nGT

i2
, . . . nGT

in
must overlap the

40% of nTR
j in time (pitch is ignored), and (2) nTR

j must
overlap the 40% of every note nGT

i1
,nGT

i2
, . . . nGT

in
in time

(again, pitch is ignored). The specific reported measures
are:

MRateGT and MRatio

Note that in this case MRatio < 1.
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3.2.6 Incorrect notes with voicing errors

Voicing errors happen when an unvoiced sound produces a
false transcribed note (spurious note), or when a sung note
is not transcribed at all (non-detected note). This situation
is commonly associated to a bad performance of the voic-
ing stage within the singing transcriber. We have defined
two categories:

• Spurious notes (PU): A spurious note is a transcribed
note nTR

j that does not overlap at all (neither in time nor in
pitch) any note in the ground truth. The associated reported
measure is:

PURateTR

• Non-detected notes (ND): A ground-truth note nGT
i is

non-detected if it does not overlap at all (neither in time
nor in pitch) any transcribed note. The associated reported
measure is:

NDRateGT

3.3 Proposed Matlab toolbox

The presented evaluation measures have been implemented
in a freely available Matlab toolbox 4 , which consists of a
set of functions and structures, as well as a graphical user
interface to visually analyse the performance of the evalu-
ated singing transcriber.

The main function of our toolbox is evaluation.m,
which receives the ground-truth and the transcription of an
audio clip as inputs, and it outputs the results of all the
evaluation measures. In addition, we have included a func-
tion called listnotes.m, which receives as inputs the
ground-truth, the transcription and the category X to be
listed, and it outputs a list (in a two-columns format: on-
set time-offset time) of all the notes in the ground-truth
tagged as X category. This information is useful to isolate
the problematic audio excerpts for further analysis.

Finally, we have implemented a graphical user inter-
face, where the ground-truth and the transcription of a given
audio clip can be compared using a piano-roll representa-
tion. This interface also allows the user to highlight notes
tagged as X (e.g. COnPOff, S, etc.).

4. PRACTICAL USE OF THE PROPOSED
TOOLBOX

In this section, we describe a practical case of use in which
the presented evaluation framework has been used to per-
form an improved comparative study of several state-of-
the-art singing transcribers (presented in Section 4.1). In
addition, a simple, easily reproducible baseline approach
has been included in this comparative study. Finally, we
show and discuss the obtained results.
4.1 Compared algorithms

We have compared three state-of-the-art algorithms for sin-
ging transcription:

Method (a): Gómez & Bonada (2013) [3]. It consists of
three main steps: tuning-frequency estimation, transcrip-
tion into short notes, and an iterative process involving note
consolidation and refinement of the tuning frequency. For

the experiment, we have used a binary provided by the au-
thors of the algorithm.

Method (b): Ryynänen (2008) [13]. We have used the
method for automatic transcription of melody, bass line
and chords in polyphonic music published by Ryynänen
in 2008 [13], although we only focus on melody transcrip-
tion. It is the last evolution of the original HMM-based
monophonic singing transcriber [9]. For the experiment,
we have used a binary provided by the authors of the algo-
rithm.

Method (c): Melotranscript 4 (based on Mulder 2004
[7]). It is the commercial version derived from the research
carried out by Mulder et al. [7]. It is based on an auditory
model. For the experiment, we have used the demo version
available in SampleSumo website 3 .

4.2 Baseline algorithm

According to [8], the simplest possible segmentation con-
sists of simply rounding a rough pitch estimate to the clos-
est MIDI note ni and taking all pitch changes as note bound-
aries. The proposed baseline method is based on such idea,
and it uses Yin [14] to extract the F0 and aperiodicity at
frame-level. A frame is classified as unvoiced if its ape-
riodicity is under < 0.4. Finally, all notes shorter than
100ms are discarded.

4.3 Results & discussion

In Figure 2 we show the results of our comparative analy-
sis. Regarding the F-measure of correct notes (COnPOff,
COnP and COn), methods (a) and (c) attains similar values,
whereas method (b) performs slightly worse. In addition,
it seems that method (a) is slightly superior to method (c)
for onset detection, but method (c) is superior when pitch
and offset values must be also estimated. In all cases, the
baseline is clearly worse than the rest of methods.

In addition, we observed that the rate of notes with in-
correct onset (OBOn) is equally high (20%) in all methods.
After analysing the specific recordings, we concluded that
onset detection within a range of ±50ms is very restrictive
in the case of singing voice with lyrics, since many onsets
are not clear even for an expert musician (as proved during
the ground-truth building). Moreover, we also observed
that all methods, and especially method (a), have problems
with pitch bendings at the beginning of the notes, since
they tend to split them.

Regarding the segmentation and voicing errors, we re-
alised that method (a) tends to split notes, whereas method
(b) tends to merge notes. This information, easily provided
by our evaluation framework, may be useful to improve
specific weaknesses of the algorithms during the develop-
ment stage. Finally, we also realised that method (b) is
worse than method (a) and (c) in terms of voicing.

To sum up, method (c) seems to be the best one in most
measures, mainly due to a better performance in segmenta-
tion and voicing. However, method (a) is very appropriate
for onset detection. Finally, although method (b) works
clearly better than the baseline, has a poor performance
due to errors in segmentation (mainly merged notes) and
voicing (mainly spurious).
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Figure 2. Comparison in detail of several state-of-the-art
singing transcription systems using the presented evalua-
tion framework.

5. CONCLUSIONS

In this paper, we have presented an evaluation framework
for singing transcription. It consists of a cross-annotated
dataset of 1154 seconds and a novel set of evaluation mea-
sures, able to report the type of errors made by the sys-
tem. Both the dataset, and a Matlab toolbox including the
presented evaluation measures, are freely available 4 . In
order to show the utility of the work presented in this pa-
per, we have performed an detailed comparative study of
three state-of-the-art singing transcribers plus a baseline
method, leading to relevant information about the perfor-
mance of each method. In the future, we plan to expand our
evaluation dataset in order to make it comparable to other
datasets 7 used in MIREX (e.g. MIR-1K or MIR-QBSH).
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