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SiPTH: Singing Transcription Based on Hysteresis
Defined on the Pitch-Time Curve
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Abstract—In this paper, we present a method for monophonic
singing transcription based on hysteresis defined on the pitch-time
curve. This method is designed to perform note segmentation even
when the pitch evolution during the same note behaves unstably, as
in the case of untrained singers. The selected approach estimates
the regions in which the chroma is stable, these regions are clas-
sified as voiced or unvoiced according to a decision tree classifier
using two descriptors based on aperiodicity and power. Then, a
note segmentation stage based on pitch intervals of the sung signal
is carried out. To this end, a dynamic averaging of the pitch curve
is performed after the beginning of a note is detected in order to
roughly estimate the pitch. Deviations of the actual pitch curve
with respect to this average are measured to determine the next
note change according to a hysteresis process defined on the pitch-
time curve. Finally, each note is labeled using three single values:
rounded pitch (to semitones), duration and volume. Also, a com-
plete evaluation methodology that includes the definition of dif-
ferent relevant types of errors, measures and amethod for the com-
putation of the evaluation measures are presented. The proposed
system improves significantly the performance of the baseline ap-
proach, and attains results similar to previous approaches.

Index Terms—Acoustic signal processing, singing voice analysis,
pitch, fundamental frequency, singing transcription.

I. INTRODUCTION

M ELODY transcription techniques are aimed to generate
a symbolic output from audio input. This is an important

task in the music information retrieval field since melody plays
a major role in Western music [1]. Nowadays, there is lot of
literature on monophonic and polyphonic melody transcription,
commonly following a generic approach in order to be applied
to different types of music and instruments. Melodic transcrip-
tion can be performed at different levels: low-level description
(energy, F0), or higher structural levels (note segmentation, or-
nament detection, etc.) [2]. In this paper we address the spe-
cific problem of monophonic singing transcription at note-level,
which can be defined as follows: Given the acoustic waveform

Manuscript received October 01, 2013; revised February 07, 2014; accepted
June 02, 2014. Date of publication June 17, 2014; date of current version January
15, 2015. This work was supported by the Ministerio de Economía y Competi-
tividad of the Spanish Government under Project No. TIN2013-47276-C6-2-R
and by the Ministerio de Educación, Cultura y Deporte through the “Programa
Nacional de Movilidad de Recursos Humanos del Plan Nacional de I-D+i 2008-
2011, prorrogado por Acuerdo de Consejo de Ministros de 7 de octubre de
2011.” The associate editor coordinating the review of this manuscript and ap-
proving it for publication was Dr. Emmanuel Vincent.
The authors are with the Universidad de Málaga, Andalucia Tech, ATIC

Research Group, ETSI Telecomunicación, E29071 Málaga, Spain (e-mail:
emm@ic.uma.es; lorenzo@ic.uma.es; abp@ic.uma.es; ibp@ic.uma.es).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TASLP.2014.2331102

Fig. 1. Diagram of a singing transcription algorithm shown in [3].

of a single-voice singing performance, produce a sequence of
notes and rests which is melodically and rhythmically as close
to the performance as possible [3]. The transcription of orna-
ments or timbre aspects is out of the scope of this paper.
Singing transcription is a task related to both melody tran-

scription and speech recognition, and it is challenging even in
the case of monophonic signals without accompaniment. This
fact is due to the continuous character of the human voice and its
acoustic and musical particularities, which are often singer-de-
pendent [4]. Furthermore, automatic singing transcription can
be applied to many different contexts. One of the renowned ap-
plications of singing transcription is query-by-humming [5], [6],
but also other types of applications are related to this task, like
singing tutors [7], [8], computer games [9], or the conversion of
singing into notes [10] or scores [11], [12].
In the literature, singing transcription has been addressed

from many different perspectives. A simple but commonly
referenced approach to singing transcription was proposed by
McNab [13], the approach relied on several simple pitch-based
and amplitude-based segmentation methods. Other singing
transcription systems also include rules to deal with intonation
issues [14] or auditory models to improve the pitch tracking
performance [15], [16]. In a later approach, Ryynänen proposes
a probabilistic model of the note event [11], which is described
together with a review on the topic in [3]. This probabilistic
model has inspired more recent approaches, such as the one in
[17]. Finally, Gómez and Bonada [4] address singing transcrip-
tion for the specific task of a capella flamenco transcription,
making use of the note segmentation algorithm defined in [18],
which first transcribes the melody into short notes and then
performs an iterative process to consolidate them.
Most of the approaches for singing transcription usually fit

the schema shown in Fig. 1, as described in [3]. First, a pre-
processing stage is usually applied to the signal to facilitate
the feature extraction process. Some of the techniques applied
at this stage are noise reduction [19] or spectral whitening to
flatten strong formants in the signal spectrum [20] to facilitate
the measurement of the fundamental frequency [3]. The fol-
lowing stage is low-level feature extraction. The features typi-
cally extracted are pitch, energy, and some other measures to de-
tect unvoiced regions, such as aperiodicity [3] or zero-crossing
rate [18]. Then, a note segmentation and labeling process pro-
duces a symbolic transcription of the input. Finally, this tran-
scription can be analyzed in a post-processing block in order
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Fig. 2. Scheme of the proposed algorithm for note segmentation and labeling.

to remove spurious notes and to obtain a musically meaningful
output.
In this article, we propose an improved method (SiPTH) for

pitch-based note segmentation and labeling of monophonic
singing audio waveforms. Note that in this paper, we always
use the term pitch when referring to the F0 of a signal. Our
approach implements an interval-based note segmentation. We
estimate the note changes through the definition of a novel
hysteresis process on the pitch-time curve, obtained using the
Yin algorithm [21] with certain specific parameters, followed
by a number of stages developed for this transcription task.
Specifically, the pitch information extracted is used later in
the note segmentation and labeling block, which provides a
note-level representation of the input audio waveform.
Hysteresis is a strongly non-linear phenomenon which occurs

in many industrial, physical and economic systems. The exact
definition of hysteresis varies from area to area and from paper
to paper [22], but it typically implies a non-linear dependence of
a system not only on its current state, but also on its past states.
In our approach, we apply this concept to the note segmenta-
tion problem so that only large and/or sustained pitch deviations
produce a change of note. The name SiPTH makes reference to
the singing transcription task addressed and to the pitch-time
hysteresis effect considered to perform note segmentation.
This paper is organized according to the diagram shown in

Fig. 2. In Section II, all the details on the low-level feature
extraction scheme are explained. This block is based on the Yin
algorithm (Section II-A) and the application of a median filter
to smooth the resulting curves (Section II-B). The following
sections (III, IV, V) correspond to the different blocks of the
note segmentation and labeling sub-system. In Section III,
the algorithm for voiced and unvoiced region classification
is described. The general idea is to use a previously trained
decision tree generated using the Weka data-mining software
[23] to identify voiced/unvoiced regions. Once the voiced
regions are detected, an interval-based segmentation stage for

legato phrases is performed (Section IV). This algorithm is a
novel interval-based segmentation, which detects note changes
through a hysteresis process defined on the pitch-time curve.
Then, pitch, power and duration are assigned to the segmented
notes to generate the symbolic output from the singing audio
signal (Section V). The evaluation methodology and the dataset
are described in Section VI. The results and comparisons
against other methods are presented in Section VII. Finally,
some conclusions are drawn in Section VIII.

II. LOW-LEVEL FEATURE EXTRACTION

The proposed scheme first estimates the pitch of the
singing voice. The estimation of the pitch has been studied
for decades [24], especially in the case of speech [25] and,
nowadays, the literature reports a wide set of methods for this
purpose.
In our approach, we use the well-known Yin algorithm [21]

to perform low-level feature extraction.

A. The Yin Algorithm

The Yin algorithm was developed by de Cheveigné and
Kawahara in 2002 [21]. It has been found to be effective
in many music transcription systems [26], [11], [27]. This
algorithm resembles the idea of the autocorrelation method
[28] but introduces relevant improvements. Specifically, the
cumulative mean normalized difference function peaks
at the optimal local period leading to lower error rates than
the traditional autocorrelation function (see [21] for details).
The cumulative mean normalized difference function
is based on the squared difference function , which is
defined as follows:

(1)

where is an integer lag variable such that , is
the time index, is the window size and is the amplitude
of the input signal at time . The difference function is then
normalized by the cumulative mean of the function over shorter
lag periods:

(2)

The Yin algorithm finds the local minimum with the smallest
lag period to perform a parabolic interpolation over the in-
terval in order to accurately find the minimum
period , which can be converted to frequency using the ex-
pression , where is the sampling rate. The aperi-
odicity measure , also called voicing parameter [17], is given
by . This parameter is a function of the strength of the
correlation at , which is related to the overall degree of signal
periodicity within the current frame.
The chosen implementation of the Yin algorithm was made

by its original author in Matlab [29]. It computes three dif-
ferent curves at frame level: fundamental frequency (F0), RMS
( ) and aperiodicity ( ). In our case, we apply the Yin algo-
rithm with the following parameters: Hz,
Hz, Hz , ,
samples, samples, Hz.
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Fig. 3. Output of the YIN algorithm for a child singing performance: funda-
mental frequency, power, and aperiodicity over time. In this figure, actual sung
notes have been marked with shadowed rectangles.

Fig. 4. Sample of application of low-pass and median filtering to a raw pitch
curve. The spurious gap at second 1 is removed by the median filter whilst it
remains after low-pass filtering.

Voiced frames usually present low aperiodicity, high energy
and stable F0. These facts are illustrated in Fig. 3 in which
voiced frames have been highlighted in dark grey (intervals b, d
and f). The curves shown in Fig. 3 have been obtained from the
waveform of a child singing a popular song.

B. Median Filtering

The estimated F0 curve is often noisy due to natural fluctua-
tions of the sound and estimation errors. In order to avoid spu-
rious errors, which could decrease the accuracy of later stages
of the system, we apply a median filter to the F0 curve. Me-
dian filtering for speech processing was proposed by Rabiner
in 1978 [28], and it has been applied to some previous systems
for singing transcription [14], [17]. This type of filtering com-
pletely removes certain spurious errors, whereas low-pass fil-
tering smooths them. As an example, in Fig. 4 these two types
of filters (moving average and moving median) have been ap-
plied to a pitch curve. A spurious gap in the F0 curve has been
perfectly removed by median filtering. Note the different result
of low-pass filtering (moving average) the same signal.
We evaluated the performance of different window sizes (3,

5, 7 samples, as in [30]). The best results (best system perfor-
mance) were found using a 3 point-median filter.

III. VOICED/UNVOICED FRAME CLASSIFICATION

In this section, we propose a method to estimate whether
a certain frame of the input signal is voiced or unvoiced. The
process of estimating voiced regions (let region stand for a
number of consecutive frames classified as voiced/unvoiced)
in singing or speech is usually called voicing. In the present
paper, only vowels and the consonants ’m’,’n’,’l’ are con-
sidered voiced, as proposed in [14]. Previous approaches
estimate voiced sounds using a wide variety of descriptors:
the RMS [14], the instantaneous aperiodicity measure [3], the

Fig. 5. Extracted features for the case of a rough timbre voice (old male
voice). Pitch stability is a better criterion to identify the voiced segment than
aperiodicity.

evidence of pitch [31], [32], or the zero crossing rate (ZCR)
combined with the RMS [28], [18]. In our method, we mix
some ideas from these previous approaches and include some
novel improvements that will be described in this section.
Specifically, our method is based on the following hypotheses:
1) The pitch slope within a voiced sound is under a certain
threshold (apart from octave errors) [33].

2) The energy during a voiced sound is high. Voiced regions
should correspond to stable high energy regions.

3) The aperiodicity during a voiced sound is low. It should
correspond to stable low aperiodicity intervals.

In the case of noisy recordings, unstable loudness and/or
rough timbre voices, we have observed that aperiodicity and
energy measures present an unstable behavior with many
spurious values (see Fig. 5). In contrast, in these cases the pitch
curve is usually stable for most of the voiced sounds (apart from
octave errors). Therefore, our method is related to the analysis
of pitch contours. A pitch contour is a temporal sequence of F0
values grouped using heuristics based on auditory streaming
cues [32]. In this paper, we introduce the novel concept of
chroma contour, which is an octave-independent version of
the pitch contour (more details are provided in Section III-A).
In our approach, only chroma contours are candidates to be
voiced regions of the input signal. Thus, our voicing method
performs three steps: (1) Estimation of chroma contours,
(2) Characterization of chroma contours and (3) Voiced/un-
voiced classification of frames.

A. Estimation of Chroma Contours

We propose a method to track stable chroma values instead of
stable pitch values in order to reduce the effect of octave errors
during pitch estimation. For this goal, we have defined two ver-
sions of the chroma: basic chroma
and shifted chroma , where

is the fundamental frequency in semitones at frame , and
is the modulo operation. These expressions have been

used to define the chroma gap:

(3)

where is the current frame index, and the operator selects
the minimum of the two values. Note that this expression avoids
meaningless outcomes derived from the usage of the modulo 12
operation when pitch values are around a multiple of 12. This
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Fig. 6. Stable pitch detection. The black curve represents the estimated pitch
value; red regions represent the mask where pitch values can vary between con-
secutive frames. The use of a mask that allows fast octave jumps avoids fake
note changes if octave errors happen.

fact is now illustrated: let and ,
then and ,
leading to , as desired. We define a chroma contour,
, as a vector that contains all the chroma values of a set of
consecutive frames such that the chroma gap remains under a
certain threshold, : , with

} (see Fig. 6). Note that we
omit the chroma contour index for simplicity.
The maximum chroma gap, , must be set. According to

[33], the maximum pitch slope found in a large set of speakers
is 216 semitones per second (st/s). With a hop size hop sam-
ples/frame and a sampling rate sr samples/s (see Section II-A),
the time hop we are using in our analysis is ms,
then the maximum pitch gap between consecutive frames ac-
cording to this work is st/s st. In our case, the
maximum chroma gap between consecutive frames has been set
to semitone. Observe that the algorithm described to
estimate the chroma contours can be seen as an octave-indepen-
dent pitch tracking process (Fig. 6).

B. Characterization of Chroma Contours

We have observed that chroma contours can correspond to
unvoiced sounds under certain circumstances, e.g. some sibi-
lant sounds or periodic background noises. So, an additional
process is needed to refine the voiced/unvoiced classification
of chroma contours. To this end, we analyzed the music col-
lection described in Section VI, which contains 1154 seconds
of singing audio. We computed a set of 20 descriptors for
each voiced/unvoiced region (specifically 4243 regions, being
2149 voiced and 2094 unvoiced): mean and median of the
RMS, mean and median of the aperiodicity, zero crossing rate
(ZCR), length in milliseconds of the longest segment with
aperiodicity under a set of thresholds and
length in milliseconds of the longest segment with RMS over
a set of thresholds . This set of descriptors
has been used to train a J48 decision tree [34] in the Weka
data-mining software using a 66% of the dataset for training
(2829 instances chosen in random order), and the remainder
34% for testing (1414 instances). J48 is a open source Java
implementation of the algorithm C4.5 [35] for the generation
of decision trees. We have used the default set of parameters
for the classifier, except for
the coincidence factor . The default value for is 0.25, but

Fig. 7. Decision tree generated by using the C4.5 algorithm implemented in the
Weka data-mining software with a very low confidence factor (strong pruning)
for the classification of voice/unvoiced frames.

we have set in order to perform strong pruning
to reduce the over-fitting. In decision trees, the over-fitting
phenomena can occur when the size of the tree is too large
compared to the number of training examples [36]. In our
case, the generated decision tree only uses two descriptors: the
length in milliseconds of the longest segment with aperiodicity
under 0.4 and the median of the RMS, achieving an F-measure
of 0.988. At the sight of the results obtained, we conclude that
voiced chroma contours can be accurately identified with a
simple decision tree, which is described in Section III-C, that
only uses the two descriptors selected.

C. Voiced/Unvoiced Classification of Frames

All the frames of the input signal that do not belong to a
chroma contour are directly classified as unvoiced. The frames
belonging to a chroma contour can be voiced or unvoiced de-
pending on the results of the decision tree for such chroma con-
tour. As explained in Section III-B, two descriptors are com-
puted for each chroma contour. Then, all the frames belonging
to the same chroma contour are classified together with the de-
cision tree shown in Fig. 7.

IV. INTERVAL-BASED NOTE SEGMENTATION

The estimation of voiced chroma contours results in a rough
note segmentation. Silences and some consonants are detected
as unvoiced regions between notes, producing a good segmen-
tation of non-legato phrases. However, pitch variations within
legato fragments are not segmented yet, since they all belong to
the same chroma contour. Probably, the simplest possible seg-
mentation could be done by simply rounding a rough pitch esti-
mate to the closest MIDI note , assuming Hz stan-
dard tuning and taking all pitch changes as note boundaries [26].
However, the singing voice has not a constant tuning reference,
especially in the case of untrained singers, and this simple quan-
tization produces many fake note changes. Therefore, we pro-
pose a novel interval-based segmentation algorithm that detects
a note change only if large and/or sustained pitch deviations are
found. This approach is appropriate to deal with vibrato, or with
untrained singers whose pitch curve can rapidly oscillate during
each note.
In the following subsections, we describe the details of our

algorithm. First, in Section IV-A we introduce the concept of
dynamic averaging to obtain a curve that roughly estimates the
pitch of the notes even when their exact boundaries are un-
known. Then, in Section IV-B, we explain how a hysteresis rela-
tionship between the instantaneous F0 and the dynamic average
is defined in order to detect meaningful pitch deviations. Finally,
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Fig. 8. Dynamic averaging of the pitch curve. Fast variations of pitch at the
beginning of the note are tracked, whereas later strong changes can be easily
detected.

in Section IV-C, we discuss about the exact time instant where
note changes should be placed to define note-labeled audio seg-
ments.

A. Dynamic Averaging

In order to obtain a more stable version of the pitch curve,
we compute the dynamic average of in the voiced frames as
follows:

(4)

where , with , is the closest index of the first frame of
a voiced region or the first frame of a new note detected ac-
cording to the description in Section IV-C. stands for
the dynamic average at frame , with the pitch detected
at frame . When is close to , with , is similar
to the curve detected (Fig. 8). However, as the duration of
the detected note grows, turns into a more stable, repre-
sentative pitch value of the note. It is important to observe that
this dynamic average does not represent the final transcribed
pitch value of the notes. Instead, the transcribed pitch of each
note is accurately computed at a later stage using a weighted
alpha-trimmed mean filter (Section V-A).
A slight variation of the dynamic average concept has been

previously used by McNab et al. in [13]. In their work, re-
gions with slow F0 variation are grouped and dynamically av-
eraged in order to estimate the successive note changes. Our
approach uses a different criterion to estimate note changes (see
Section IV-B). While McNab et al. consider a note change as
soon as the instantaneous F0 deviates from the dynamic average,
we consider a note change only if a large and/or sustained devia-
tion of the F0 with respect to the dynamic average is found. We
detect large and/or sustained pitch deviations by means of the
definition of a novel hysteresis effect of the pitch-time curve.

B. Hysteresis

In order to find note changes, we compute the cumulative
pitch deviation (or deviation area) between the instanta-
neous pitch curve F0 and the dynamic average . Let
stand for the first frame index of a note (the note index has been
dropped for simplicity). Note that the first frame of each note ei-
ther coincides with the first frame of a voiced chroma contour or
it is found according to the criterion described in Section IV-C.
The cumulative pitch deviation at frame is , ac-

Fig. 9. Representation of the hysteresis process for the detection of note
changes. Samples are taken from real data: from to to .
The instantaneous F0 and the dynamic average for each note are shown.
Strong and/or sustained deviations of the instantaneous F0 with respect to the
dynamic average trigger the detection of note changes. Observe that although
the instantaneous F0 estimated for the final note deviates more than a semitone,
the system does not detect a spurious note change.

cording to Section IV-A, and it is calculated using the following
recursive equation, for :

(5)

with the instantaneous pitch deviation,
in semitones, between the instantaneous pitch detected and the
dynamic average pitch curve . is the hop size in seconds
(defined in Section III-A). is named interval threshold (in
semitones). Note that instantaneous pitch deviations of magni-
tude under are not considered significant. The recursion in
eq. (5) ends when the current chroma contour ends or a new note
is detected.
In order to find note changes, let denote the first frame

index in the current note such that , with a
certain deviation area threshold. This event indicates that a new
note has been detected. The initial frame of the new note will
be precisely defined according to the criterion in Section IV-C.
Then, will be replaced by the first frame index of the new
note and the dynamic average and the cumulative pitch devia-
tion values will be reset to restart the detection process (Fig. 9).
The influence of and on the performance of the

scheme is evaluated in Section VII, leading to the selection
of the following values: semitones and
semitones seconds.

C. Exact Position of the Onset

Defining the exact position of the note change in singing
voice is not an easy task. When singing legato notes, the tran-
sition between notes is naturally smoothed and it becomes an
interval, not an instant.
In this paper, a note segmentation method that makes use of

two specific events related to the cumulative pitch deviation, is
proposed. These events are (see Fig. 10):
• The frame when the cumulative pitch deviation (devia-
tion area) exceeds the threshold .

• The first frame, , of the last one of the significant pitch
deviation areas (where ) in the current note.

A note change is considered to happen in the middle point
between these two time instants: the first frame of a new note
is found by rounding to the nearest integer the mean of the two
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Fig. 10. Segmentation process. The dynamic averaging and the hysteresis ef-
fect are used to detect note changes. In this example, the interval threshold
has been set to 0.25 semitones.

frame indexes considered. This choice has empirically proved
to be a good compromise in most cases to define note segments.

V. NOTE LABELING AND CONVERSION TO MIDI

The different note segments detected, must be labeled to gen-
erate a symbolic notation. In the proposed labeling procedure,
each note is assigned the following values: pitch, onset/offset
time positions and volume.

A. Assigned Pitch

A constant pitch value must be assigned to each note in order
to perform symbolic transcription. This value is computed in
two steps: first, the precise pitch value of the note is estimated,
then it is rounded to the closest semitone.
In order to estimate the precise pitch value of each note, we

assume that pitch transients and unstable oscillations are not
representative of the perceived pitch, and therefore they must
not be considered (a similar idea has been applied in previous
approaches [13], [37], [15]). To this end, we propose the use of
the energy-weighted -trimmed mean filter [38] over the pitch
curve for each note segment. In this filter, the extreme (high and
low) values of F0 (typically outliers) are excluded and only the
remainder values are considered in the weighted average. Let

denote the pitch values of the frames of a note arranged
in ascending order of magnitude:

, with the number of frames of a certain note. Then, the
pitch value assigned to each note is computed as follows:

(6)

where is the energy (sum of square values of the signal)
in frame . The parameter indicates the amount of values to
be removed ( ): with the conventional mean
is obtained whereas with all the values except central
one are removed (leading to the median filter). In our case we
have used (more details about tuning are provided in
Section VII). The operator is the greatest integer function.
Once the precise pitch value of each note is known, in

order to obtain a symbolic transcription of the result, a refer-
ence tuning must be considered. We have assumed the standard
tuning reference: Hz. Any other tuning could be used,
in fact, some previous approaches consider the possibility of a
different tuning reference that can be constant [14] or smoothly
time variant [13]. However the selection of the standard tuning
allows as to use the MIDI scale to perform the transcription. So,
the of each note is rounded to the nearest semitone of the
MIDI scale in order to compute the assigned pitch value .

B. Onset and Offset Time

The estimated onset and offset1 times are key aspects for a
proper rhythmic transcription of the singing melody. In our ap-
proach, the onsets of the transcribed notes are placed according
to the procedure described in Section IV-C. Similarly, the offset
time is found when either an unvoiced region or a note change
is found.

C. Velocity

According to the MIDI specification [40], the velocity of a
note represents its loudness. We estimate the loudness of each
note by averaging its power evolution. In the proposed approach
we assume that the gain of the input signal has been adjusted
to cover the whole dynamic range. We have not evaluated this
aspect of the transcription. However, a qualitative analysis of
the results showed that the volume of the transcribed notes was
perceptually similar to the original audio.

D. MIDI Conversion

The final MIDI transcription was performed with the MIDI
tool kit for Matlab developed by Ken Schutte [41]. This tool kit
allows to read and write MIDI files by using Matlab matrices
easily. In the proposed scheme, each note corresponds to aMIDI
note message including information about onset and offset in-
stants, MIDI note number (rounded pitch), and velocity.

VI. EVALUATION METHODOLOGY

The standard approach for the evaluation ofmelody transcrip-
tion systems is to compare the automatic transcriptions with
human annotations. In this section, we describe the music col-
lection gathered for evaluation (Section VI-A), the chosen cri-
teria to build the ground truth, (Section VI-B) and a novel set
of evaluation measures (the definition of the measures can be
found in Section VI-C and details on the computation can be
found in Section VI-D).

1We define the offset time as the time frame when an active note changes to
an inactive state [39].
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A. Music Collection

Our dataset consists of 38 melodies sung by adult and child
untrained singers, recordedwith a sample rate of 44100 Hz and a
resolution of 16 bits. Generally, the recordings are not clean and
some background noise is present. The duration of the excerpts
ranges from 15 to 86 seconds and the total duration of the whole
dataset is 1154 seconds. This music collection can be broken
down into three categories, according to the type of singer:
• Children (our own recordings): 14 melodies of traditional
children songs (557 seconds) sung by 8 different children
(5-11 years old).

• Adult male: 13 pop melodies (315 seconds) sung by 8 dif-
ferent adult male untrained singers. These recordings were
randomly chosen from the public MTG-QBH dataset [42].

• Adult female: 11 pop melodies (281 seconds) sung by 5
different adult female untrained singers. These recordings
were also randomly chosen from the public MTG-QBH
dataset.

Note that in this collection the pitch and the loudness can be
unstable and vibratos are not frequent.

B. Ground Truth

The described music collection has been manually annotated
to build the ground truth. Since there is no standard criteria to
manually annotate musical content [2], we have defined our own
methodology according to the specific context and goals of our
system. First, we have transcribed the audio recordings with a
baseline algorithm (see Section VII-A), and then all the tran-
scription errors have been corrected by an expert musician with
more than 10 years of academic training in music. The transcrip-
tion errors were corrected by listening, at the same time, to the
synthesized transcription and the original audio. The musician
was given a set of instructions about the specific criteria to an-
notate the singing melody:
• The onsets are placed at the beginning of voiced segments
and in each clear change of pitch or phoneme. In the case
of ’l’, ’m’, ’n’ voiced consonants + vowel (e.g. ’la’), the
onset is not placed at the beginning of the consonant but at
the beginning of the vowel.

• The annotated pitch of each note is the closest semitone to
the pitch of the sung note, as perceived by the expert.

• Ornaments such as pitch bending at the beginning of the
notes or vibratos are not annotated. Some considerations
about this type of ornaments can be found in [37].

• Portamento between notes is ignored.

C. Evaluation Measures

In the literature, we can find many different approaches to
compare automatic transcriptions against the ground truth. In
[11], two different evaluation measures for singing transcrip-
tion are proposed: frame-based error and note-based error. The
frame-based error considers the ratio of correctly transcribed
frames, and the note-based error considers the ratio of correctly
transcribed notes (their duration is ignored). According to [11],
a frame or note is correctly transcribed when the rounded pitch
(to semitones) of the frame or note equals the ground truth, and
the onset of the transcribed note is within a tolerance window
of ms. In [4], a similar measure has been used together

with three more measures typically applied to melody extrac-
tion [32]: voicing recall, voicing false alarm and raw chroma
accuracy. Other approaches try to break down the type of tran-
scription errors, e.g. insertions, deletions, etc. [15], [43], but the
duration of the errors is not considered.
In this paper, we propose a novel set of evaluation measures

that reports details about the specific type of transcription mis-
takes make and their duration:
1) Voicing: We consider two measures as stipulated by

MIREX for audio melody extraction, which are also used in
[4]: voicing recall, i.e. percentage of voiced frames in the
reference that are classified as voiced by the algorithm, voicing
false alarm, i.e. percentage of unvoiced frames in the reference
that are classified as voiced by the algorithm.
2) Pitch Accuracy: We measure the raw pitch accuracy, i.e.

the percentage of voiced frames where the pitch estimation is
correct. In our case, we consider that the pitch is correct if the
rounded pitch (to semitones) is the same.
3) Note-based and Frame-based Error Rates by Categories:

We classify each note from both the transcription and the ground
truth into one of the following six categories:
1) Non-detected note (ND): A note in the referencemelody
that does not overlap any note at the transcribed melody,
neither in time nor in pitch.

2) Spurious note (PU): A note in the transcribed melody
that does not overlap any note in the reference melody,
neither in time nor in pitch.

3) Split note (S): A single note from the reference melody
that has been incorrectly segmented into different con-
secutive notes in the transcribed melody.
The onset difference between and must be within

ms, the whole group must overlap
more than 50% of , and the rounded pitch (to semitones)
of must be the same as .

4) Merged note (M): A single note at the tran-
scribed melody that results from several merged notes

in the reference melody. The onset dif-
ference between and must be within ms, the
whole group must overlap more than 50%
of and the rounded pitch (to semitones) of must be
the same as . If a note is classified as Split
and Merged, then it will be considered neither Split nor
Merged since this fact means that there are two pairs of
overlapped notes and they will be classified into one of the
following categories: CD or BD (to be defined).

5) Correctly detected note (CD): A note from the tran-
scribed melody that hits a note from the reference
melody in time and pitch. We define a hit in a similar way
to [11]: the rounded pitch (to semitones) must be the same,
the onset difference between and must be within

ms, must overlap more than the 50% of both
and , as described in Section VI-D. If a note has been
already classified as Split or Merged, it is not classified as
Correctly Detected.

6) Badly detected note (BD): A note from the transcribed
melody that overlaps a note from the reference, but it has
not been classified into any of the previous categories. This
case corresponds to transcribed notes that have the same
pitch as the reference, but the onset difference is larger than

ms or their duration is very different.
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Additionally, we compute the number of frames belonging to
the notes in each of the six categories. Note that these categories
are computed in order, from ND to BD. The proposed algorithm
to identify them is described in Section VI-D. Therefore, we
have considered the note-rate ( ) and frame-rate ( )
for each category , defined as follows:

(7)
where is the total number of notes in the ground truth, is
the total number of notes in the transcription, is the number
of notes in the ground truth belonging to category (i.e. S, M,
…), is the number of notes in transcription belonging to
category, is the number of frames of all the notes in the
ground truth, is the number of frames of all the notes in the
transcription, is the number of frames of the notes in the
ground truth belonging to category , and is the number
of frames of the notes in the transcription belonging to category
. Note that the importance of frame-based measures relies on

the fact that these measures account for the performance eval-
uation taking into account the actual duration of the notes be-
longing to a certain category with respect to the duration of
all the notes. Conversely, note-based measures do not consider
the actual duration of the notes.
Since Non-detected notes (ND) are only present in the ground

truth, and Spurious notes (PU) are only present in the transcrip-
tion, we define the note-rate and the frame-rate measures for
these categories as follows:

(8)

(9)

The proposed evaluation measures are computed for each
melody separately and then all the error rates are averaged to
report the final results.

D. Algorithm to Identify the Category of Transcription Errors

Let denote a vector of length containing the
rounded pitch value (at frame level) of the note of the reference
melody. Note that the pitch value is rounded to exact semitones.
If the note is played at frame ], then
equals theMIDI number of the note, otherwise . The
same procedure is applied to the notes in the transcribed melody
in order to define a vector containing the pitch value of the
note in the transcribed melody. As an example, suppose that
a ground truth melody consists of three consecutive notes: G4
+ 20 cents (MIDI number 67.2), A4 - 10 cents (MIDI number
68.9) and B4 + 30 cents (MIDI number 71.3). Then, the vector

for each note will be:

(10)

The vectors are combined to define the matrices (size
) and (size ):

...
...

(11)

These two matrices are used to build a new matrix with size
. Each element in , , represents the number of

overlapped frames between the note in the ground truth and
the note in the transcribed melody. This matrix is computed
as follows:

(12)

where the function counts the number of overlapped
frames in time and pitch between the ground truth and the
transcription. This function defines every element in as:

(13)

where the function returns 1 if a coincidence in pitch and
time between the ground truth and the transcription is found,
otherwise it returns 0:

(14)

With all this, the matrix provides information about the re-
ciprocal overlap between the ground truth and the transcrip-
tion. Two different normalization factors should be applied to
this matrix in order to obtain and . In the case of

, each row should be divided by the length of the note
in the ground truth (in frames). On the other hand, for ,
each row should be divided by the length of the note in the
transcribed melody. The length of each note in frames is de-
fined as . Let and denote
two vectors containing the required normalization factors:

(15)

(16)

and let denote the operation that produces a diagonal
matrix whose non-null elements are given by . Using this op-
erator, two normalization matrices are defined:

(17)

Then, the matrices that provide information about the ratio of
overlap between the ground truth and the transcription and vice
versa, and respectively, can be computed ac-
cording to:

(18)

(19)
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Additionally, we define the onset function as the index
of the first non-zero value of the vector . For instance, for a
given note , . We
then define the following two vectors:

...
...

(20)

These vectors are used to define the onset difference matrix ,
which contains the absolute onset difference in milliseconds be-
tween all the notes of the transcribed melody and all the notes of
the reference. The elements of , , are defined as follows:

(21)

with the hop size in seconds.
Now, a set of rules are applied in order to determine the cate-

gory of each note from the reference and each note from
the transcription. These categories and rules are:
• Not detected note (ND) ( ): We consider that a note
in the ground truth is not-detected if

. That means that there is no overlap between
the note in the ground truth and the whole transcription.

• Spurious note (PU) ( ): We consider that a note in
the transcription is a spurious note if

. That means that there is no overlap between
the note from the transcription and the whole ground
truth.

• Split note (S) ( ): We consider that a note
in the ground truth is split into a set of notes in

the transcription if with ,
ms and .

• Merged note (M) ( ): We consider that sev-
eral notes in the ground truth are merged into a
single note in the transcription if with

, ms and . That
means that there are several notes in the ground truth that
overlap a single long note in the transcription.

• Correctly detected (CD) ( ): A note in the
ground truth, has been correctly transcribed a note in
the transcription, if , and

ms. Notes that have been previously classified
as Split or Merged are not considered as coincident notes.
Note that this implies a bidirectional coincidence in both
time and pitch between the ground truth and the transcrip-
tion.

• Badly detected (BD) ( ): A note , in the ground
truth, has been badly transcribed as note in the transcrip-
tion, if and it has not been classified into
any of the previous categories.

Note that these categories are computed in the order de-
scribed. In Fig. 11 we show a comprehensive example to
understand each type of error.

VII. RESULTS & DISCUSSION

In this section, the performance of the proposed scheme is
evaluated according to the described evaluation methodology.
The results are compared against a simple baseline approach
based on the Yin algorithm, a HMM based approach based on

Fig. 11. Example of comparison between the ground truth and the transcribed
melody. All the error types defined are illustrated using a sample outcome of
the proposed evaluation algorithm.

Ryynännen work [11][3] and the transcription scheme develop
by Gomez and Bonada in [4].

A. Baseline Approach

We have compared our algorithm with a baseline approach.
According to [26], the simplest possible segmentation consists
of simply rounding a rough pitch estimate to the closest MIDI
note and taking all pitch changes as note boundaries. There-
fore, we have implemented a baseline approach to estimate the
pitch using the Yin algorithm and the parameters described in
Section II-A so that it can be easily implemented by other re-
searchers for comparison purposes. Additionally, we consider a
frame as unvoiced if its aperiodicity is under , and we dis-
card the notes shorter than 100 ms.

B. HMM-based Approach

We have also implemented a simplified version of
Ryynänen’s approach [11][3], in which note events and si-
lences have been modelled with a left-to-right four-state
Hidden Markov Model (HMM). The first three states have
been associated to the attack-sustain-release events and the
fourth state to noise/silence. For each frame, three descriptors
have been obtained as described in [3]: fundamental frequency,
aperiodicity, and accent (see [44] for details about this feature).
The emission probabilities have been modelled using Gaussian
mixtures models (GMM) with 3 Gaussian distributions per
state. The whole model has been trained using the music
collection described in Section VI-A, and each state has been
manually associated with different segments of the recording
as follows: state (1): first frame of each note (i.e. the onset),
state (2): sustain of each note (between the onset and the
offset), state (3): last frame of each note (i.e. the offset) and
state (4): unvoiced regions. In our implementation, we have
not included the musicological model described in [11], since
we consider that the singer does not necessarily follow any
musicological constrain related to note sequences.

C. Evaluation and Discussion

In Fig. 12, we show the results obtained for each evaluation
measure computed for our system, the baseline approach de-
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Fig. 12. Detailed performance evaluation of the monophonic singing transcrip-
tion system proposed, the baseline approach, the HMMapproach and the Gómez
and Bonada transcription scheme [4] (confidence interval set to 0.5 semitones).
Themeasures that should bemaximized are in bold and the measures that should
be minimized are in cursive. All measures have been expressed in percentage.

scribed in Section VII-A, the transcription scheme develop by
Gomez and Bonada in [4] and the HMM based approach de-
scribed in Section VII-B.
The first measure is the Raw pitch accuracy and the following

two are Voicing recall and Voicing false alarm, the rest corre-
spond to the Note-rate (NR) and the Frame-rate (FrR) measures
for each category: Non-detected, Spurious, Split, Merged, Cor-
rectly detected and Badly detected. The results have been ob-
tained using our scheme with the parameters described in pre-
vious sections, specifically: median filtering of the F0 curve,
maximum chroma gap between consecutive frames in a chroma
contour semitone, interval threshold to perform note
segmentation semitones and hysteresis with cumu-
lative pitch deviation (area) threshold semitones
seconds.
As shown in Fig. 12, the proposed system developed for

singing transcription outperforms the baseline approach, and
attains similar results to previous state of the art schemes.
Regarding the pitch accuracy, which is directly related to the
correct estimation of notes’ pitch, our approach performs better
than the rest of approaches. In the case of voicing, both our
approach and Gómez & Bonada have similar performances. In
addition, when compared with the HMM-based approach, our
approach and Gómez & Bonada have a better voicing recall,
but a worse voicing false alarm. This is so because the voicing
estimation is more restrictive in the HMM-based method. Note
that, in spite of this fact, the rate of spurious notes is slightly
higher in the HMM-based method.
Regarding the Note-rate and Frame-rate of correctly detected

notes, the performances of all the state-of-the-art systems are
similar between them (and better than the baseline, as expected).
However, we found statistically significant differences between
the HMM-based approach and Gómez & Bonada in terms of
CD note-rate performance (frame-rate score differences are not
significant). On the other hand, note the good behavior of the

Fig. 13. Illustration of the influence of the system parameters and
on the pitch-based segmentation process. The optimal performance is achieved
when the rate of correctly detected notes (CD) is maximum, and the rates of the
rest of errors (ND, PU, S, M and BD) are minimum. (Top: area threshold

semitones second. Bottom: interval threshold semitones).

baseline method with respect to the other methods regarding
the rate of merged (M) notes. This fact can be considered a
drawback of the hysteresis cycle introduced by our system.
We have observed that this issue is especially noticeable when
consecutive vowels are analyzed or in the presence of voiced
consonants (e.g. ’lalala’), in this case, all the notes are often
merged. However, our approach is robust against vibrato or
other type of oscillations around a constant pitch (see descrip-
tion in Section IV-B). The statistical significance of all the
mentioned differences has been verified using Student’s t-test.

D. Influence of the Parameters on the System Performance

We have studied the influence of three main parameters on
the behavior of the system: interval threshold (see eq. (5)),
cumulative pitch deviation (area) threshold and, (see eq.
(6)). For the case of and , we have analyzed the evolu-
tion of each evaluation measure in the note-rate category along
each parameter. An illustration of the results obtained is shown
in Fig. 13. It can be observed that the highest CD note-rate is
obtained for a confidence interval semitones and an
area threshold semitones second.
Note that our system tends to merge notes rather than split

them. However, for low values of and , the number
of split notes increases due to the implicit trade-off between
merged notes (indicated by measure M) and split notes (mea-
sure S) of our approach.
Finally, also the effect of the parameter has been studied.

In this case, the influence of on the global performance has
not been found to be as important as the parameters previously
considered. However, we found that produces the
highest correctly detected note (CD) rate, with no differences if
the parameter is maintained within this range, in the experiments
performed. Conversely, if or , the system
accuracy (CD) slightly decreases. In our case, we have chosen
the central value of the interval: .
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VIII. CONCLUSIONS

The SiPTH system for singing note segmentation and
labeling has been presented. This scheme uses the Yin
algorithm [21] with specific parameters and a post-processing
stage to extract three different curves: pitch, power and aperi-
odicity. This information is used to perform a first segmentation
by estimating stable chroma contours. The concept of chroma
contour is introduced in this paper as an octave-independent
version of the pith contour.
A simple set of descriptors is computed from each stable

chroma contour to distinguish between voiced/unvoiced
regions. The voicing F-measure attained by the proposed
approach on a varied set of recordings is around 97%.
After the voiced regions have been identified, a novel in-

terval-based segmentation method has been applied to define
note segments. Note changes are identified when strong and/or
sustained pitch deviations are found. Thus, a pitch-time hys-
teresis effect has been considered to avoid the detection of weak
and/or short pitch variations as false note changes.
A detailed evaluation methodology has been proposed which

involves an original algorithm to recognize the different types
of transcription errors. The proposed error measures can be con-
sidered an extension of the ones proposed by Ryynänen in [11]
and they have been inspired by the evaluation methodology pro-
posed in the MIREX contest for onset detection [43]. The eval-
uation methodology proposed is more complete than previous
ones and it can be applied to further singing transcription sys-
tems to thoroughly study their performance at note and frame
level.
After comparing the results obtained by the proposed scheme

against the performance of a baseline scheme defined in this
manuscript, a transcription algorithm developed by Gomez and
Bonada [4] and a HMM-based method inspired by [3], [11], it
can be concluded that the system developed introduces remark-
able improvements with respect to the baseline, especially in the
correctly transcribed Note-rate, Frame-rate and raw pitch accu-
racy measures. Also, our system achieves similar performance
to the one attained by the HMM-based scheme implemented and
to the algorithm presented in [4], while using a totally different
strategy. On the other hand, further research is needed to im-
prove the rate of merged notes, which is higher than with the
baseline approach mainly because of note changes detected on
vowels or voiced consonants.

ACKNOWLEDGMENT

The authors are grateful to E. Gomez for providing the results
of the scheme developed in [4] for comparison.

REFERENCES

[1] J. Plantinga and L. J. Trainor, “Memory for melody: Infants use a rel-
ative pitch code,” Cognition, vol. 98, no. 1, pp. 1–11, 2005.

[2] M. Lesaffre, M. Leman, B. De Baets, and J. Martens, “Methodolog-
ical considerations concerning manual annotation of musical audio in
function of algorithm development,” in Proc. 5th Int. Conf. Music Inf.
Retrieval ISMIR, 2004, pp. 64–71.

[3] M. Ryynänen, “Singing transcription,” in Signal Processing Methods
for Music Transcription, A. Klapuri and M. Davy, Eds. New York,
NY, USA: Springer Science + Business Media LLC, 2006, pp.
361–390.

[4] E. Gómez and J. Bonada, “Towards computer-assisted flamenco tran-
scription: An experimental comparison of automatic transcription al-
gorithms as applied to a cappella singing,” Comput. Music J., vol. 37,
no. 2, pp. 73–90, 2013.

[5] B. Pardo, J. Shifrin, and W. Birmingham, “Name that tune: A pilot
study in finding a melody from a sung query,” J. Amer. Soc. Inf. Sci.
Technol., vol. 55, no. 4, pp. 283–300, 2004.

[6] C. De La Bandera, A. M. Barbancho, L. J. Tardón, S. Sammartino, and
I. Barbancho, “Humming method for content-based music information
retrieval,” in Proc. 12th Int. Soc. Music Inf. Retrieval Conf. ISMIR,
2011.

[7] D. M. Howard, G. Welch, J. Brereton, E. Himonides, M. Decosta, J.
Williams, and A. Howard, “WinSingad: A real-time display for the
singing studio,” Logopedics Phoniatrics Vocology, vol. 29, no. 3, pp.
135–144, 2004.

[8] C. Dittmar, H. Gromann, E. Cano, S. Grollmisch, H. M. Lukashevich,
and J. Abeer, “Songs2see and globalmusic2one: Two applied research
projects in music information retrieval at Fraunhofer IDMT,” in Proc.
7th Int. Conf. Exploring Music Contents (CMMR’10), S. Ystad, M.
Aramaki, R. Kronland-Martinet, and K. Jensen, Eds. New York, NY,
USA: Springer, 2010, pp. 259–272, vol. 6684 of Lecture Notes in Com-
puter Science.

[9] “Singstar game, by Sony Computer Entertainment Europe,” [Online].
Available: http://www.singstar.com/ 2004

[10] V. Bharathi, A. A. Abraham, and R. Ramya, “Vocal pitch detection for
musical transcription,” in Proc. Int. Conf. Signal Process. Commun.
Comput. Network. Technol. ICSCCN, 2011, pp. 724–726.

[11] M. Ryynänen and A. Klapuri, “Modelling of note events for singing
transcription,” in Proc. ISCA Tutorial Res. Workshop Statist. Percept.
Audio Process. SAPA, Jeju, Korea, Oct. 2004.

[12] E. Molina, I. Barbancho, E. Gomez, A. Barbancho, and L. Tardon,
“Fundamental frequency alignment vs. note-based melodic similarity
for singing voice assessment,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process. (ICASSP), 2013, pp. 744–748.

[13] R. J. McNab, L. A. Smith, and I. H. Witten, “Signal processing for
melody transcription,” in Proc. 19th Australasian Comput. Sci. Conf.,
1996, vol. 18, no. 4, pp. 301–307.

[14] G. Haus and E. Pollastri, “An audio front end for query-by-humming
systems,” in Proc. 2nd Int. Symp. Music Inf. Retrieval (ISMIR), 2001,
pp. 65–72.

[15] L. P. Clarisse, J. P. Martens, M. Lesaffre, B. D. Baets, H. D. Meyer,
and M. Leman, “An auditory model based transcriber of singing se-
quences,” in Proc. 3rd Int. Conf. Music Inf. Retrieval ISMIR, 2002, pp.
116–123.

[16] T. De Mulder, J.-P. Martens, M. Lesaffre, M. Leman, B. De Baets, and
H. De Meyer, “An auditory model based transcriber of vocal queries,”
in Proc. 4th Int. Conf. Music Inf. Retrieval ISMIR, 2003.

[17] W. Krige, T. Herbst, and T. Niesler, “Explicit transition modelling for
automatic singing transcription,” J. New Music Res., vol. 37, no. 4, pp.
311–324, 2008.

[18] J. J. Mestres, J. B. Sanjaume, M. De Boer, and A. L. Mira, “Audio
recording analysis and rating,” U.S. Patent 8,158,871, Apr. 17, 2012.

[19] S. Vaseghi, Advanced signal processing and digital noise reduction.
New York, NY, USA: Wiley, 1996, vol. 46.

[20] T. Tolonen andM.Karjalainen, “A computationally efficientmultipitch
analysis model,” IEEE Trans. Speech Audio Process., vol. 8, no. 6, pp.
708–716, Nov. 2000.

[21] A. De Cheveigné and H. Kawahara, “YIN, a fundamental frequency
estimator for speech and music,” J. Acoust. Soc. Amer., vol. 111, no. 4,
p. 1917, 2002.

[22] I. Mayergoyz, “Mathematical models of hysteresis,” IEEE Trans. Mag-
netics, vol. MAG-22, no. 5, pp. 603–608, Sep. 1986.

[23] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.
H. Witten, “The WEKA data mining software: An update,” SIGKDD
Explor. Newsl., vol. 11, pp. 10–18, Nov. 2009.

[24] E. Gómez, A. Klapuri, and B.Meudic, “Melody description and extrac-
tion in the context of music content processing,” J. New Music Res.,
vol. 32, no. 1, pp. 23–40, 2003.

[25] W. Hess, Pitch determination of speech signals. Berlin, Germany:
Springer Verlag, 1983.

[26] T. Viitaniemi, A. Klapuri, and A. Eronen, “A probabilistic model for
the transcription of single-voice melodies,” in Proc. Finnish Signal
Process. Symp. (FINSIG’03), 2003, pp. 59–63.

[27] G. E. Poliner, D. P. W. Ellis, A. F. Ehmann, E. Gomez, S. Streich,
and B. Ong, “Melody transcription from music audio: Approaches and
evaluation,” IEEE Trans. Audio, Speech, Lang. Process., vol. 15, no.
4, pp. 1247–1256, May 2007.



MOLINA et al.: SIPTH: SINGING TRANSCRIPTION BASED ON HYSTERESIS DEFINED ON THE PITCH-TIME CURVE 263

[28] L. Rabiner and R. Schafer, Digital processing of speech signals, ser.
Prentice-Hall Series in Signal Processing No. 7. Englewood Cliffs,
NJ, USA: Prentice-Hall, 1978.

[29] A. De Cheveigné, Matlab implementation of YIN algorithm [Online].
Available: http://audition.ens.fr/adc/sw/yin.zip Feb. 2012

[30] L. Rabiner, M. Sambur, and C. Schmidt, “Applications of a nonlinear
smoothing algorithm to speech processing,” IEEE Trans. Acoust.,
Speech, Signal Process., vol. ASSP-23, no. 6, pp. 552–557, Dec. 1975.

[31] J. Rouat, Y. C. Liu, and D. Morissette, “A pitch determination
and voiced/unvoiced decision algorithm for noisy speech,” Speech
Commun., vol. 21, no. 3, pp. 191–207, 1997.

[32] J. Salamon and E. Gómez, “Melody extraction from polyphonic
music signals using pitch contour characteristics,” IEEE Trans. Audio,
Speech, Lang. Process., vol. 20, no. 6, pp. 1759–1770, Aug. 2012.

[33] Y. Xu and X. Sun, “Maximum speed of pitch change and how it may
relate to speech,” J. Acoust. Soc. Amer., vol. 111, p. 1399, 2002.

[34] “Documentation about class J48 of WEKA tool,” [Online]. Available:
http://weka.sourceforge.net/doc/weka/classifiers/trees/J48.html Feb.
2012.

[35] J. Quinlan, C4. 5: programs for machine learning. Burlington, MA,
USA: Morgan Kaufmann, 1993, vol. 1.

[36] Y. Mansour, “Pessimistic decision tree pruning based on tree size,” in
Proc. 14th Int. Conf. Mach. Learn., 1997, pp. 195–201.

[37] E. Pollastri, “Some considerations about processing singing voice for
music retrieval,” in Proc. 3rd Int. Conf. Music Inf. Retrieval ISMIR,
2002.

[38] J. Bednar and T. Watt, “Alpha-trimmed means and their relationship
to median filters,” IEEE Trans. Acoust., Speech, Signal Process., vol.
ASSP-32, no. 1, pp. 145–153, Feb. 1984.

[39] E. Benetos and S. Dixon, “Polyphonic music transcription using note
onset and offset detection,” in Proc. IEEE Int. Conf. Acoustics, Speech,
Signal Process. (ICASSP), 2011, pp. 37–40.

[40] M. M. Association et al., “MIDI 1.0 detailed specification,” The Int.
MIDI Association, Los Angeles, CA, USA, 1998.

[41] K. Schutte, MIDI toolkit for Matlab, 2012 [Online]. Available: http://
www.kenschutte.com/midi

[42] J. Salamon, J. Serra, and E. Gómez, “Tonal representations for music
retrieval: From version identification to query-by-humming,” Int. J.
Multimedia Inf. Retrieval, pp. 1–14, 2013.

[43] J. S. Downie, MIREX contest website, 2013 [Online]. Available: http://
www.music-ir.org/mirex

[44] A. P. Klapuri, A. J. Eronen, and J. T. Astola, “Analysis of the meter of
acoustic musical signals,” IEEE Trans. Audio, Speech, Lang. Process.,
vol. 14, no. 1, pp. 342–355, Jan. 2006.

Emilio Molina received his degree in telecommuni-
cations engineering from the University of Málaga,
Spain, in 2011. In 2012, he obtained the Professional
Degree of classic piano from the Conservatori del
Liceu, Barcelona, Spain, and his M.Sc. in sound
and music computing from the Universitat Pompeu
Fabra, Barcelona, Spain, in 2013. He was awarded
with the Best Final Year Project award from Uni-
versity of Málaga in 2007 and he was nominated as
finalist for the Best Final Year Project Award by the
Official National Telecommunications Engineering

Board in 2013. Currently, he is a Ph.D. candidate at the Application of Infor-
mation and Communication Technologies Research Group. His main research
topic is the automatic analysis and processing of audio signals and applications.

Lorenzo J. Tardón received his degree in telecom-
munications engineering from the University of
Valladolid, Spain, in 1995 and his Ph.D. degree from
the Polytechnic University of Madrid, Spain, in
1999. In 1999 he worked for ISDEFE on air traffic
control systems at the Madrid-Barajas Airport and
for Lucent Microelectronics on systems manage-
ment. Since November 1999, he has been with the
Department of Communications Engineering, Uni-
versity of Málaga, Spain. He is currently the head of
the Application of Information and Communications

Technologies (ATIC) Research Group. He has been the main researcher of
different projects on audio and music analysis. He is a member of several
international journal committees on communications and signal processing. In
2011, he was awarded the Premio Málaga de Investigación by the Academies
Bellas Artes de San Telmo and Malagueña de Ciencias. His research interests
include serious games, audio signal processing, digital image processing, and
pattern analysis and recognition.

Ana M. Barbancho received her degree in telecom-
munications engineering and her Ph.D. degree from
University of Málaga, Spain, in 2000 and 2006,
respectively. In 2001, she received her degree in
solfeo teaching from the Málaga Conservatoire of
Music. Since 2000, she has been with the Depart-
ment of Communications Engineering, University
of Málaga, as an Assistant and then Associate
Professor. Her research interests include musical
acoustics, digital signal processing, and mobile
communications. Dr. Barbancho was awarded with

the Second National University Prize to the Best Scholar 1999/2000 by the
Spanish Ministry of Education in 2000 and with the Extraordinary Ph.D. Thesis
Prize by ETSI Telecomunicación of University of Málaga in 2007.

Isabel Barbancho (SM’10) received her degree
in telecommunications engineering and her Ph.D.
degree from the University of Málaga, Spain, in
1993 and 1998, respectively, and her degree in
piano teaching from the Málaga Conservatoire of
Music in 1994. Since 1994, she has been with the
Department of Communications Engineering, as
an Assistant and then Associate Professor. During
2013, she was a Visiting Scholar at the University
of Victoria, Victoria, BC, Canada. She has been
the main researcher on several research projects

on polyphonic transcription, optical music recognition, music information
retrieval, and intelligent content management. Her research interests include
musical acoustics, signal processing, multimedia applications, audio content
analysis, and serious games. Dr. Barbancho received the Severo Ochoa Award
in Science and Technology, Ateneo de Málaga-UMA in 2009 and the Premio
Málaga de Investigación 2011 Award from the Academies Bellas Artes de San
Telmo and Malagueña de Ciencias.


